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Executive summary 
The Queensland Government committed to a two-year scientific program to enhance Queensland’s capacity to 
assess, monitor and report on the extent and condition of vegetation for the state. One of four key areas within this 
program was the goal to develop an approach to map the condition of Queensland’s terrestrial vegetation, an area 
encompassing 1.73 million km2, over space and time. This report outlines the approach taken to achieve this goal, 
through the development of Spatial BioCondition (SBC), a vegetation condition mapping workflow for Queensland.  

Spatial BioCondition was developed to align with Queensland’s site-based BioCondition framework, which is based 
on the concept that vegetation condition can be measured as the departure from its reference state, specific to 
each of Queensland’s defined regional ecosystems. Consequently, the aim of Spatial BioCondition was to model 
the departure from the reference state, within regional ecosystems in remote sensing space, using three types of 
input data aimed at producing currency output for 2017: 

1. Site-based training data comprising sites in reference state condition (state 1) and in condition states 2, 3 
and 4 (response variables). Condition classes were selected as the response rather than a continuous 
score, to increase the number of fit-for-purpose data sites available within the project timeframe. 

2. A suite of contemporary, state-wide remote sensing data (predictor variables); 
3. Environmental domain mapping, represented by state-wide pre-clear RE mapping at the vegetation 

community level (Version 11). 

The SBC workflow and framework were first tested in a trial study located in the Brigalow Belt Bioregion, using a 
mechanistic modelling approach. The trial study highlighted the critical importance of accurately geo-referenced 
and appropriately assessed training data, and limitations in the mechanistic modelling approach, particularly 
around the setting of thresholds in the continuous output data to demarcate the condition classes. Consequently, 
for state-wide application, considerable effort went into cleaning the training dataset, and an alternative machine 
learning (ML) model approach was developed. 

For SBC model training or testing, a total of 48,012 candidate vegetation sites from across Queensland’s terrestrial 
ecosystems were collated from existing data sources, new field survey and expert elicitation. However, less than 
half (49%) were assessed as suitable for use in either the training or testing of the models.  Of these, 13,571 were 
reference sites that provided a sufficient sample to produce SBC model output with a 2017 currency for 2,267 
(82%) of Queensland’s vegetation communities, covering 89% of the state. 

Four remotely sensed (RS) datasets, some with multiple bands, resulting in a total of 17 potential predictor 
variables, were selected for the modelling process. Where these RS datasets were part of a time series dataset, 
the data closest to 2017 were selected. Of the competing modelling frameworks tested, the ML model had superior 
accuracy than the mechanistic model, so it was selected as the framework for further analyses and to produce the 
SBC prediction of BioCondition classes. 

Although ML models are thought to be difficult to interpret, recent advances such as the use of SHAP plots, which 
show the relationship between predictors and probabilities, have assisted in clarifying interpretation.  The SHAP 
plots produced for the ML model used to predict BioCondition classes revealed that the most important predictor, 
the Fractional Cover Green Fraction standard deviation (FC_green_std), was stable over time in the high quality 
condition sites (class 1), suggesting these areas tend to be dominated by perennial vegetation, an attribute of site-
based BioCondition assessments. Overall, the condition classes identifying the slightly degraded (Class 2) and 
moderately degraded (Class 3), were the most difficult to classify, with relatively low accuracy scores (F1-scores of 
0.41 and 0.39 respectively). 

We recommend that prior to operationalising a vegetation condition reporting framework for Queensland using 
SBC, further work is required including: 

• Independent validation of the output, possibly within case study area/s currently being set up by other 
programs such as the Australian Agricultural Biodiversity Stewardship pilot program within Queensland 

• Investigate sensitivity of the SBC to detect change over time 

• Determine a method to spatially demonstrate levels of uncertainty in the output 

• Address sampling gaps in the training data, including sampling in vegetation in class 2 and 3 condition 
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1 Introduction 

1.1 The enhanced vegetation assessment and monitoring program for 
Queensland  

The ability to assess and monitor vegetation condition is essential for governments to administer legislation and 
strategies relating to the landscapes and biodiversity covered by their jurisdiction (Neldner 2006; Oliver et al. 2021). 
The Queensland Government is committed to the protection and enhancement of its natural environment and to 
gather information to support environmental policy and legislation. It has committed to scientific program to 
enhance the Statewide Landcover and Trees Study (SLATS) and establish a vegetation condition monitoring and 
mapping framework for the state (DES 2019a). The intention of the program is to increase Government’s capacity 
to inform a range of initiatives, including vegetation management, the Land Restoration Fund, Great Barrier Reef 
programs, fire management and planning and biodiversity conservation and threatened species management and 
planning. The program intends to achieve this through strengthened scientific collaborations within and between 
agencies and academic institutions and will utilise remote sensing tools and field observations (DES 2019a).  

The four key project areas within the initial phase of the enhanced vegetation assessment and monitoring program 
are to: 

1. Establish a high-resolution baseline woody vegetation extent map. 
2. Develop methods for mapping and monitoring woody regrowth. 
3. Transition SLATS from Landsat to Sentinel 2 satellite imagery and incorporate outputs of 1 and 2 above to 

provide a comprehensive woody vegetation assessment, monitoring and reporting framework for 
Queensland. 

4. Develop and test enhanced approaches for mapping vegetation condition over space and time. 

The focus of this report is project area 4; to develop an approach that will allow the spatial representation of 
terrestrial vegetation condition within Queensland’s current, site-based vegetation condition assessment 
framework, BioCondition (Eyre et al. 2015). This project will build on the substantial science-base that has been 
under development in Queensland for the past 15 years, particularly in the fields of remote sensing and the 
assessment of woody cover and ground cover, regional ecosystem description and mapping, and vegetation 
condition assessment frameworks (BioCondition). 

1.2 Vegetation Condition: what does it mean and at what scale? 

The use of the term ‘condition’, as it is generally used by policy and management both in Australia and 
internationally, is underpinned by the assumption that its assessment will represent a measure of ecological 
composition, structure and function (sensu Noss 1990) along a continuum of ‘poor’ to ‘good’, relative to some 
desired state or potential.  

Early definitions of vegetation condition were developed relative to grazing land management of rangelands, as the 
“health or productivity of both soil and forage of a given range, in terms of what it could or should be under normal 
climate and best practicable management” (Society of American Foresters 1944).  Since then, the development of 
conceptual frameworks to better reflect ecological complexity, as well as the expansion of applications to which the 
concept of condition is often attached, means there can be ambiguity regarding what is meant by ‘condition’ (Keith 
and Gorrod 2006). Consequently, the context and purpose of the condition assessment needs to be clearly defined 
(Gibbons and Freudenberger 2006). For example, good condition for grazing land productivity does not always 
correspond with good condition for biodiversity (Eyre et al. 2010a; Parsons et al. 2017). 

Vegetation condition is a multi-variate and multi-scaled concept, meaning that it cannot be measured directly. It is 
usually calculated as a model, or algorithm, combining various measurable attributes or indicators to give an overall 
condition metric or score. There is no agreed definition of vegetation condition in Australia. However, currently 
implemented vegetation condition assessment frameworks are all based on a similar concept, where the condition 
measure is derived from an ecosystem’s current attributes relative to its reference state (Table 1).  

Vegetation condition is applicable at multiple scales. At this stage, most Australian biodiversity condition 
assessment frameworks are applicable at the scale of the site, where condition attributes are measured in the field 
at a fixed site that represents a homogenous patch at a localised scale, and landscape-level condition attributes, 
relative to that site, can be calculated remotely. Recent work has extended the concept of vegetation condition 
assessment to remotely map vegetation condition at regional to global scales using systematic and repeatable 
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methods, such as the Habitat Condition Assessment System, a national-scale program which aims to map habitat 
condition at a 0.01o resolution across Australia, which is currently being developed by CSIRO (Williams, 2019) 
Challenges that arise in transitioning from site-based condition assessment approach to spatial representation 
include: 

• High dependence upon numerous suitable and representative input site-based data (Harwood et al. 
(2016), and limitations on the availability of that data 

• Need for spatial data products that: are currently available; have been developed and tested; and 
represent vegetation condition attributes 

• Assurance that mapped or modelled output adequately represents vegetation condition assessed at the 
local (site-based) scale 

• Limitations of currently available regional scale spatial imagery to reliably distinguish plant species (such 
as transformer weeds, floristics) and separate vegetation strata (e.g. tree and shrub layers). 

Table 1: Definitions of vegetation condition for biodiversity assessment frameworks in Australia   

 
Jurisdiction 

 
Terminology 

 
Assessment 

 
Definition 

 
Reference 

 

 
New South 
Wales 
 

 
Vegetation 
integrity 

 
Biodiversity 
Assessment 
Method 

The condition of native vegetation assessed for 
each vegetation zone against the benchmark, 
being quantitative measures that represent the 
‘best-attainable’ condition, for the Plant 
Community Type. 
 

Office of 
Environment and 
Heritage (2017) 

 
Victoria 

 
Vegetation 
quality 

 
Habitat 
Hectares 

Measure of the intactness and viability of 
vegetation in relation to its site condition and 
landscape context, where site condition is the 
measure of the ‘naturalness’ or ‘intactness’ of a 
patch of vegetation using several site-based 
attributes assessed against a defined 
benchmark 
 

Parkes et al. 2003; 
Department 
Sustainability and 
Environment (2004) 

 
Queensland 

 
Vegetation 
condition 

 
BioCondition 

The relative capacity of a regional ecosystem to 
support the suite of species expected to occur in 
its reference state, which refers to the natural 
variability of the stable land-based vegetation 
state that is mature and relatively long 
undisturbed in the contemporary landscape and 
in ‘Best-on-Offer’ (BOO) condition 
 

Eyre et al. (2015) 

 
Tasmania 

 
Site condition 

 
TasVeg 

Measure of the ‘naturalness’ or ‘intactness’ of a 
zone using a number of site-based attributes 
assessed against a defined benchmark 
 

Michaels (2006) 

Northern 
Territory 

 
Vegetation 
condition 

NT 
Vegetation 
Condition 
Assessment 
(NTVCA) 

The degree of difference from a benchmark type 
for a particular vegetation type, where the 
benchmark type represents its most natural or 
least disturbed state. 
 

Brocklehurst and 
Price (2008) 

National  
Habitat 
condition 

Habitat 
Condition 
Assessment 
System 
(HCAS) 

The capacity of an area to provide the structures 
and functions necessary for the persistence of 
all species naturally expected to occur there in 
an intact state 

 
Williams et al. 
(2018) 
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1.3 Queensland’s BioCondition Framework 

Queensland’s BioCondition is a vegetation condition assessment framework that provides a measure of the 
capacity of a terrestrial ecosystem to maintain biodiversity values at a local or property scale. It is a site-based, 
quantitative and repeatable assessment procedure that provides a numeric score that reflects functional through to 
dysfunctional vegetation condition states for biodiversity. Its development was initiated in 2006 to assist with 
decision making in vegetation management and biodiversity conservation applications and has evolved through a 
substantial science-based research program (Eyre et al. 2010a; Kelly et al. 2011). It currently supports the 
Queensland Environmental Offsets Policy, bushland restoration prioritisation (e.g. Natural Resource Investment 
Program) and market-based programs such as Accounting for Nature and the Land Restoration Fund. 

In BioCondition, vegetation condition is defined as the relative capacity of a site in a regional ecosystem to support 
the suite of species expected to occur in a site of the same regional ecosystem in its reference state, or ‘Best-on-
Offer’ (BOO) condition. The intent of the vegetation condition metric generated by the BioCondition framework is 
that the higher the score, the more flora and fauna species will be supported relative to the ecosystem type, 
therefore the purpose of the BioCondition assessment is unequivocally to represent condition from a biodiversity 
perspective (Eyre et al. 2018). 

There are three primary components that underpin the BioCondition framework; a suite of assessable attributes 
that are based on a pressure-state-response conceptual framework; a clear definition of the reference state from 
which benchmarks for the assessable attributes are set; and a scoring system that provides a condition metric that 
is comparable between and within ecosystems over space and time. 

 

1.3.1 Assessable site based BioCondition attributes 

When assessing BioCondition at the site or property scale, attributes, or indicators, of vegetation condition provide 
a reliable, cost and time-effective approach to assessing biodiversity values which are typically costly and time-
consuming as well as require significant skills in species identification and assessment (McElhinny et al. 2005; Eyre 
et al. 2011). For the BioCondition assessment method, a set of 10 site-based attributes, and three landscape-scale 
attributes were selected based on; 

• Their capacity to act as direct or surrogate measures of species diversity and/or ecological processes 
(Figure 1). 

• How sensitive they are to detecting change due to management 

• Level of correlation with each other 

• How well they allow discrimination between sites of the same ecosystem type but different condition state. 

The majority of site- based assessable BioCondition attributes are not currently available spatially, and typically do 
not have direct remotely sensed corollaries. However, there are predictor remote sensing variables which can be 
used that have a logical justification for their inclusion in a model (see examples, Table 2). Correlations between 
some field measured attributes of vegetation condition including litter cover, large trees, shrub cover and non-
native species cover, and multi-spectral remotely sensed data tend to be poor (Lawley et al. 2016; Harwood et al. 
2016). But others have been adaptively developed and continually tested (e.g. tree canopy cover and SLATS) and 
therefore offer great utility for mapping vegetation condition. At this stage, only two BioCondition attributes that are 
known to be important for biodiversity in many of Queensland’s ecosystems (Figure 1) are spatially available, 
tested and reliably mapped across the state; tree (or woody) canopy cover and grass cover (or converse, being 
bare ground).   

Landscape-scale attributes, including fragmentation and connectivity metrics, can be calculated from existing 
spatial datasets, namely SLATS woody cover data (DES 2018) and/or mapped regional ecosystems (DES 2018a).  
The development of a method to map the distribution and age of woody regrowth, as a project within the Enhanced 
Vegetation Assessment and Monitoring program (DES 2019a), will be a valuable data source in the assessment of 
landscape-level metrics.  
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Figure 1: Important vegetation condition attributes for biodiversity (number of vascular plant, reptile, bird 
and mammal species), based on empirical research (Eyre et al. 2018). Data shown is the independent 
effects from hierarchical partitioning of species diversity data 

 

1.3.2 Reference states and benchmarks 

Ecological reference states provide context for the assessment of vegetation condition, by providing a baseline 
from which the degree of change in vegetation attributes can be measured. They essentially provide a similar 
function to control treatments in ecological experimental designs. The definition and identification of vegetation in 
its reference state is therefore a critical component of ecological assessments, whereby scientifically credible 
inference on change can be drawn (Hawkins et al. 2010; Borja et al. 2012). Benchmarks provide the numerical 
context for defining the reference state, where quantitative values are measured for attributes of biodiversity and/or 
vegetation from similar ecological types in the reference state (Eyre et al. 2015; McNellie et al. 2020).  

In BioCondition, the reference state is defined as the stable state that is mature and relatively long undisturbed in 
the contemporary landscape (Eyre et al. 2015). Most other definitions of the reference state in Australia (see Table 
1) are based on a premise of a pristine historical ‘intactness’ or ‘naturalness’, which is difficult to define, measure 
and test in contemporary times (McNellie et al. 2020).  Consequently, this can lead to issues in the accuracy and 
precision of quantifying benchmarks (Hawkins et al. 2010; Eyre et al. 2015), which then compromises the condition 
score.  

Most available benchmarks for Queensland’s regional ecosystems have been measured from at least three sites in 
BOO condition during optimal seasonal conditions by Queensland Herbarium botanists and ecologists. These data 
are supplemented with appropriate existing detailed quantitative vegetation data where available.  For rare, highly 
modified extant regional ecosystems, expert elicitation is used to set benchmarks.  
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Table 2: BioCondition vegetation condition attributes and reliability to measure at the site and landscape 
scale, and potential corollary spatial data 1C = Compositional; F = Functional; S = Structural 

Broad 
response 

Site based 
BioCondition 
attributes 

Attribute 
type 
C,F,S1 

Biotic Reliable 
to assess 
at site-
scale 

Reliable to 
assess at 
landscape-
scale 

Time series spatial data 
available or *not yet available 
(requires further research and 
development) 

Species 
Richness  

Native 
Tree/shrub/grass/ forb 
and other species 
richness 

C Direct Y N *Models of species richness by 
plant functional groups using 
floristic site data 

Cover Tree canopy cover F, S Indirect Y Y Fractional Projective Cover 
(FPC) Landsat 30 m resolution 
time series 1988 – 2014; 
Sentinel 2 10 m resolution 
2015+ (woody cover, i.e. tree 
and shrub canopy combined); 
Auscover ALOS/ISAT 2009 

  Shrub canopy cover F, S Indirect Y N *Lidar/GEDI 

  Native perennial grass 
cover 

F, S Indirect Y Y/N Fractional cover Note: also 
includes non-native grass and 
annual grasses 

  Non-native tree, shrub, 
grass, forb and other 
cover 

C, F Direct Y N *Species Distribution Models 
(statistical, machine learning),  
For non-native grass NSW 
Seasonal Cover Disturbance 
Index (Fractional Cover)  

  Organic litter cover F, S Indirect Y N *Time series persistent non-
green 

  Bare ground (as 
converse of litter and 
native grass cover, 
coarse woody debris) 

F, S Indirect Y Y Fractional cover 

Structure Coarse woody debris F, S Indirect Y N  *Lidar/GEDI/Terrestrial Laser 
Scanners (Muir et al. 2018) 

  Large tree density S Indirect Y N *Scarth et al. (2001) Landsat 
canopy size algorithms 

  Recruitment of woody 
perennial species 

S, F Indirect Y N  Nil 

  Tree canopy height S, F Indirect Y N *Time series / regrowth mapping 
(DES 2019a).  Lidar/GEDI 

Landscape Fragmentation and 
Connectivity 

F, S Indirect N Y Fragmentation indices; Cost-
benefit approach (Drielsma et al. 
2007), based on Qld-based 
remnant/non-remnant coverage 

  Remoteness from 
permanent water 

F Indirect N Y Effective Distance from Water 
product Healy et al. (2020) 
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1.3.3 Scoring system 

The BioCondition framework provides a vegetation condition metric for an assessment site, relative to its reference 
state, with a continuous value between 0-1. The intent of the metric is that the closer the score is to 1, the more 
fauna and flora species the ecosystem being assessed will support, relative to its type. The score is calculated by 
aggregating the measures of attributes from an assessment site relative to those attributes in the same regional 
ecosystem in its reference state. Some attributes are weighted more highly than others to standardise relative 
‘importance’, meaning the degree to which the attribute: 

• has a potential impact upon long-term condition (e.g. non-native plants) 

• is a keystone feature and/or takes a long time to replace in a system if lost e.g. large trees attribute is the 
most highly weighted, given their relative rarity across many ecosystems. (Eyre et al. 2010b)  

• has high relative habitat value based on empirical research  

BioCondition currently uses a stepped ordinal scoring approach to score each of the attributes (BioCondition 
Version 2.2), which is simple to apply but tends to have low discriminatory power so is less sensitive than a 
continuous scoring system in detecting trend or change in condition over a temporal scale.  It also relies on the 
selection of appropriate thresholds, which can be arbitrary. The BioCondition scoring system is currently being 
revised to use a non-linear continuous scoring approach similar to that used by the Biodiversity Assessment 
Method in New South Wales (Department of Planning, Industry and Environment 2020), because it is also simple 
to implement, avoids thresholds and can still account for natural variability and super-abundance. 

The continuous BioCondition score can be classified into four classes (Table 3;  

 

Figure 2) representing functional and relatively intact vegetation for biodiversity (class 1) through to highly modified 
native vegetation with low functionality for biodiversity (class 4). The four BioCondition classes allows alignment 
with other condition classification frameworks, in particular the Grazing Land Management ABCD framework (Bray 
et al. 2016). The BioCondition classification system can also be aligned with Queensland’s regulated Vegetation 
Management framework under the Vegetation Management Act (VMA) 1999, particularly for vegetation classified 
under categories B, C and X (Figure 3). 

Table 3: Broad BioCondition classes, definition, and description 

BioCondition 

Class 

BioCondition 

score 
Definition Detailed description 

1 >0.8 

Good quality remnant, 

relatively intact (typically 

mapped as VMA Category B) 

Mature established vegetation with no or extremely minimal 

disturbance from weeds, fire, grazing, clearing, thinning, fodder 

harvesting or any other disturbance visibly altering the 

structure (of any layer) or species composition of the 

community away from the expected definition outlined by the 

Regional Ecosystem description.  

2 0.6-0.8 

Degraded remnant or 

advanced regrowth (typically 

mapped as VMA Category B 

or C) 

Mature established vegetation impacted by disturbance(s) 

which have altered the structure or species composition of the 

vegetation community. Typically, the community will still meet 

the remnant vegetation criteria however some examples of–

older regrowth also fit into this category. Examples are native 

woodland with a ground layer dominated by *Cenchrus ciliaris 

or Acacia aneura open forest with minor fodder harvesting.  

3 0.4-0.59 

Non-remnant, some attributes 

missing or significantly below 

benchmark value (typically 

mapped as VMA Category X) 

Non-remnant or regrowth native vegetation impacted by 

disturbance events and not meeting the remnant vegetation 

criteria. Includes young and some older regrowth. Some 

attributes may approach benchmark values however other 

attributes are either missing or significantly below benchmark 

value (e.g. exotic pastures with paddock trees and coarse 

woody debris, grassland with high exotic cover). 

4 <0.4 

Non-remnant, Crops, sown 

pastures, requires 

management to restore 

condition attributes (typically 

mapped as VMA Category X) 

Non-remnant exotic dominated vegetation including crops and 

exotic pastures. Low biodiversity and habitat value. Includes: 

tree crops/orchards, exotic pastures with isolated paddock 

trees. Most attributes are significantly below benchmark value. 
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Figure 2: BioCondition scores and classes for various condition states of RE 11.9.5, Acacia harpophylla 
and/or Casuarina cristata open forest on fine-grained sedimentary rocks  

 

Figure 3: Schematic illustrating the relationship between Queensland’s Vegetation Management 
framework, the continuous BioCondition score and BioCondition classes 
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1.4 Vegetation condition mapping approaches  

There are numerous methodological approaches that can be taken to represent vegetation condition spatially. The 
majority of approaches have tested how to best predict vegetation condition, as a multivariate metric derived from 
site data, using a suite of suitable remotely sensed data across extensive geographic regions (Kocev et al. 2009; 
Lawley et al. 2016). 

Broadly, four approaches that have emerged in the recent literature or discussions with vegetation condition 
mapping experts include: 

1. Remote sensing (RS), and other spatial data that compare an observed value of vegetation attributes 
against their benchmark value  

2. Broad State-and-Transition Models 
3. Remote sensing models that use field-based reference (best-on-offer) sites as training data 
4. Remote sensing models that use field-based vegetation condition sites as training data 

To date, of these approaches, approach 3 and 4 have been tested, applied regionally in Australia, peer-reviewed 
and published. Approaches 1 and 2 have been conceptualised in the literature and have only very recently been 
applied in a mapping framework for Australian ecosystems (L. Shoo, GreenCollar pers. comm.; A. Richards, 
CSIRO, pers. comm.).  The relative advantages and disadvantages of each approach are summarised in Table 4. 

1.4.1 Spatial comparison against benchmarks using remote sensing data  

Of the four approaches, this approach is the most analogous, in a spatial sense, to the site-based BioCondition 
vegetation condition assessment framework. This is because the method treats each data input as a stand-alone 
attribute which is compared against a benchmark value for that attribute and scored. Scores are then aggregated 
across all attributes to generate an overall vegetation condition score, like the BioCondition assessment procedure 
(Figure 4).  

The key advantages of this approach are that the mapped outputs can be conceptually linked to ecological 
processes and functions, and therefore outputs can be easily interpreted and explainable to stakeholders. Another 
advantage is that the benchmarks used are dynamic. A key disadvantage – at this stage – is that most remotely 
sensed datasets cannot appropriately be used as stand-alone attributes to represent a field-based attribute (e.g. 
shrub canopy cover).  

This approach is similar to that of Approach 3, in that it relies on a suite of reference site data for each 
environmental domain, which in Queensland can be based on the regional ecosystem mapping. The broad steps in 
the process are (Luke Shoo, GreenCollar, pers comm): 

1. Collate or collect vegetation condition reference sites for each regional ecosystem 
2. Extract time-matched attribute values from a spatial dataset for each of the reference sites  
3. Determine the benchmark (median value) for each mapped time-series attribute for each regional 

ecosystem 
4. Derive a composite map of benchmark values by attributing the regional ecosystem preclearing mapping 

with benchmark values for each attribute. 
 

 

Figure 4: Example of Approach 1, where a remote sensing dataset, representing a BioCondition attribute 
(e.g. tree canopy cover) is compared against a benchmark to derive a BioCondition score (source and 
thanks to: L. Shoo, GreenCollar) 
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Table 4: Advantages and disadvantages of approaches to map vegetation condition at regional scales 

 
 
Feature 

Approach 1 
Spatial 

comparison 
against 

benchmarks 

Approach 2 
Broad State-

Transition 
Model 

Approach 3 
RS models 

using 
reference sites 

Approach 4 
RS models 

using condition 
sites 

 
Condition metric used 

BioCondition 
score  

BioCondition 
class 

Difference in 
remote-

sensing space 

BioCondition 
score 

 
Advantages 

Relatively simple to implement and approach published    
✓ ✓ 

Relatively easy to collate training data, or training data 
not required 

✓ ✓ ✓  

Provides conceptual link to ecosystem function or 
process for stakeholders 

✓ ✓ 
  

Uses benchmarking type approach, which allows 
conversion to common currency 

✓ 
 

✓ 
 

Incorporates dynamic reference (time-matched) 
approach to mapping 

✓ 
 

✓ ✓ 

Vegetation condition is perceived as continuous 
✓ 

 
✓ ✓ 

Uncertainty easily partitioned and explained  
✓ 

  

Multiple alternate reference condition states are 
incorporated and explicit 

 
✓ 

  

Elements of condition that may inherently differ 
between ecosystems (e.g. tree canopy cover in 
woodlands vs grasslands) are explicit 

✓ 

 

✓ 

 

✓ 

(if ecosystem 

mapping exists) 

 

Mapping can be automated across time and space 
✓ 

 
✓ ✓ 

Provides an adaptive platform for continuous 
improvement as new datasets and technologies 
become available 

✓ 

 

 
✓ 

 

✓ 

 

Disadvantages 

High reliance on expert knowledge of characteristic of 
various condition states for different ecosystem types 

 
✓ 

  

High reliance on appropriately located and identified 
field-based reference sites 

✓ 
 

✓ ✓ 

High reliance on the availability of benchmarks for 
vegetation condition attributes for all vegetation 
communities for scoring condition 

✓ 
  

✓ 

High reliance on RS data with quantified relationship 
with site-based condition attributes 

✓ 
   

Relies on completed benchmarks for ecosystems for 
scoring vegetation condition  

✓ 
 

 ✓ 

High reliance on site data across all assessable units 
(e.g. broad vegetation groups) in various condition 
states 

✓ 
  

✓ 

Relies on RS data alone (other data representing 
composition and function not explicitly incorporated e.g. 
non-native species) 

  
✓ ✓ 
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1.4.2 Broad state-and-transition models  

Broad state-and-transition models (STMs) describe structural, compositional and functional changes to an 
ecosystem driven by both natural events and human activities (Bestelmeyer et al. 2017). As in BioCondition, this 
framework identifies a reference state for the ecological community of interest. It then builds a narrative, using field 
condition data and expert knowledge, for the identification and description of broad vegetation condition states and 
the factors which divert them from their reference state, called transitions (Bestelmeyer et al. 2003). Many STMs 
have been developed to assist management of an ecosystem back to a preferred state, particularly in rangeland 
ecosystems (Westoby et al. 1989; Rumpff et al. 2011, Bestelmeyer et al. 2017).   

STMs are most accurate when applied to specific vegetation communities that have been well studied 
(Bestelmeyer et al. 2003). Therefore, they can be difficult to apply regionally in highly diverse landscapes. Without 
appropriate supporting research, the drivers of transitions may not be well defined, which in turn can impact 
appropriate management recommendations, particularly in dynamic systems (Rumpff et al. 2011; Bestelmeyer et 
al. 2017). Consequently, the broadscale application of STMs across a range of ecosystems may potentially result 
in a prohibitive volume of data to process.   

In Australia the Vegetation Assets, States and Transitions (VAST) conceptual framework has been developed 
(Thackway and Lesslie, 2005; Figure 5). The VAST framework defines seven vegetation cover types of increasing 
vegetation modification which are grouped broadly into Native and Non-native vegetation cover. It identifies the 
dominant vegetation modification factors present in Australia, namely clearing for development, forestry harvesting 
and production, invasion of non-native species, overgrazing and reduced fire intervals. This framework accepts 
various vegetation condition inputs and provides a consistent classification (Thackway and Lesslie, 2005) but 
additional development would be required to produce a complex model across multiple different vegetation types 
simultaneously. The state-and-transition simulation model (STSM) and associated software product (ST-sim) 
developed by Daniel et al. (2016) enables the application of state-and-transition model theory across large, 
vegetatively complex, areas focusing on land use/land cover change models. The model uses transition 
probabilities which can vary both spatially and temporally and are derived from external model outputs based on 
historic change data for independent drivers (eg; fire, clearing, agricultural land use). This manages the sometimes-
random nature of transitions in vegetation communities and allows the model to be used to predict future change. 
Until recently, the disadvantage of STSMs were that they could only track discrete states. However, STMS have 
now been extended to allow continuous variables to also be tracked (Daniel et al. 2017). 

Important advantages of STMs for defining and mapping condition is that change in condition states can be easily 
explained, ecological concepts can be simplified into categories, and that multiple alternate stable, or reference, 
states can be made explicit. However, a disadvantage is the use of a classification scheme to characterise each 
state, rather than a continuous scale (but see Daniel et al. 2017). Work has progressed to address this but there 
remains a dependency on externally modelled continuous inputs, such as carbon budgets or biomass, to inform the 
score.  In those cases, STMs can only provide a continuous score for the individual input, not the state of the 
vegetation community overall. The approach also relies on substantial input from experts to define the various 
states for different ecosystem types. For practical application in Queensland at a state-wide level, state-transition 
models would need to be applied at the highest classification of Broad Vegetation Group (BVG, 5M). At finer 
resolution BVG classifications, or for regional ecosystems, substantial research and expert elicitation would be 
required to define condition states and transitions for numerous ecosystems. 

  

Figure 5: The VAST conceptual framework (Thackway and Lesslie, 2005) 
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1.4.3 Models using remote sensing predictors and field-based reference training data  

This approach is exemplified by the Habitat Condition Assessment System (HCAS), a national scale project that 
has gained recent traction through the publication of the method by Donohue et al. (2014) and Harwood et al. 
(2016).  The HCAS project is a mapping approach developed by CSIRO in collaboration with the Commonwealth 
Department of Environment and Energy (DoEE) to provide a nationally consistent, landscape level map of habitat 
condition (Williams 2019).   

In brief, this approach quantifies vegetation condition as the distance in remote sensing space, weighted by the 
distance in environment space, between a pixel and a similar pixel (i.e. within the same environmental domain) in 
its ecological reference state.  The deviation from the reference represents loss in condition, and the condition 
score generated from the modelling procedure is the distance measure between the pixels.  Field sites where the 
reference state has been determined on the ground, or sites that are remotely selected using expert knowledge 
and/or human land use (i.e. sites in national parks assumed to be in ‘reference’ state). Harwood et al. (2016) used 
a statistical technique in their modelling framework, generalised dissimilarity modelling, which models the pairwise 
difference between pixels as a function of differences in multiple environmental abiotic variables.  

A conceptually similar approach to mapping condition, the dynamic reference-cover method of Bastin et al. (2012), 
has been applied to determine change in remotely sensed ground cover (Bastin et al. 2014).  The dynamic 
reference-cover approach can be described as a regional benchmarking approach, where areas are compared to 
areas in the local vicinity that are in reference condition, to give a nominally climate-adjusted metric of ground cover 
and land management. 

The primary advantages of this approach are that it is relatively simple to implement, particularly in Queensland 
where the regional ecosystem mapping can be used instead of modelling abiotic environmental domains.  It also 
caters for environmental dynamism, and the approach has been peer-reviewed and demonstrated. The primary 
disadvantage of this approach is that it is difficult to link the steps in the approach with ecosystem process or 
function, because a number of vegetation condition attributes, such as exotic species cover and species richness, 
are not detectable using remote sensing data. The approach is also reliant upon a large and representative set of 
reference site data that adequately samples all defined environmental domains or ecosystem types. A clear 
definition of what is meant by the ‘reference’ state is also required (e.g. BioCondition BOO), to ensure variation 
between sites allocated to be in the ‘reference’ state is minimised.  Definitions of ‘reference’ or ‘good condition’ may 
conceptually differ between various collectors of vegetation condition data, depending upon their assessment 
objectives.  

 

1.4.4 Models using remote sensing predictors and field-based vegetation condition 
assessments as training data 

In the various approaches to map vegetation condition described above, site-based vegetation condition data is 
used for model training in Approach 3 (training data representing the reference state) and the approach discussed 
here (training data representing the full suite of condition states).  A similarly derived vegetation metric derived 
using the Habitat Hectares approach (Parkes et al. 2003) was successfully modelled across 40% of Victoria in one 
of the first attempts to model a vegetation condition metric at the landscape scale in Australia (Newell et al. 2006). 
The authors used a neural network modelling procedure and predictor variables included vegetation type, land-use, 
climate and lithology and state-wide tree cover mapping. Kocev et al. (2009) also used site-based training data 
derived from the Habitat Hectares method and remote sensing predictor variables. They used machine learning to 
model not only the overall vegetation condition metric across the state of Victoria using regression trees and 
ensembles of regression trees, but also each of the attributes that contribute to the overall Habitat Hectares metric, 
using multi-target regression trees, and ensembles of multi-target regression trees.  

The major advantage of this approach is that the concept of condition can be continuous, rather than categorised 
into broad, pre-defined condition states. Another advantage is that, if available, a larger pool of training data (i.e. 
not just reference state data) can be utilised to train the model. Another advantage, like Approach 3, is that it is 
relatively simple to process and interpolate across vast areas if there is sufficient training data. A predominant 
disadvantage of this approach is the high reliance on a training dataset that is representative across ecosystems 
and the full range of condition states within those ecosystems. For a diverse area the size of Queensland, obtaining 
an adequate sample of training sites could be prohibitive. It is an important issue to address, as low sampling will 
lead to over- and underestimation of the condition scores and low accuracy in the mapped model output (Newell et 
al. 2006). Another difficulty with this approach is that the method is somewhat of a ‘black box’, where establishing 
clear links between the mapped output of the model and ecological function and process is problematic.  This can 
make interpretation of the results and communication to stakeholders potentially challenging. 
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1.5 Overview of Spatial BioCondition workflow and framework 

Following review of the four vegetation condition mapping approaches, the project team broadly selected Approach 
3 (i.e. modelling with RS predictors and reference site training data) to form the basis of further investigation. The 
primary incentives that motivated the selection of this approach were because: 

• Given the challenges faced by the Queensland Spatial BioCondition project, such as mapping diverse 
landscapes at a continental scale and tight time constraints, the approach has been shown to perform 
reasonably well in mapping broadscale vegetation condition. 
 

• The main inputs required by the method include; sites in vegetation communities in reference condition; 
contemporary RS datasets; and mapped or modelled environmental domains, which are datasets 
developed and curated by the project partners (DES Remote Sensing Centre and Queensland Herbarium). 
The Remote Sensing Centre is responsible for the curation and development of statewide RS datasets, 
and employs skilled modellers experienced in the management of large, complex datasets. The 
Queensland Herbarium is responsible for the development, storage and curation of statewide reference 
site data and regional ecosystem mapping (representing environmental domains) and employs ecologists 
skilled in the collection and management of Queensland’s vegetation data. 
 

• The approach is adaptive and flexible in terms of type of modelling framework, definition of vegetation 
condition and quantity and variety of data inputs, so was suited for application using models and data 
tailored specifically for use in Queensland 

 
The workflow developed to produce a state-wide map of vegetation condition for terrestrial ecosystems of 
Queensland (Spatial BioCondition) is summarised in Figure 6. The underpinning intent of the Spatial BioCondition 
framework was to model the distance, or departure, from the reference state within vegetation communities in 
remote sensing space, using three types of input data;  

1. Site-based training data of sites in reference state (BOO) condition and 2, 3 and 4 states of condition 
(response variables). Condition classes were selected as the response rather than a continuous score, to 
increase the number of fit-for-purpose data sites available within the project timeframe. 
 

2. A suite of contemporary, state-wide remote sensing data (predictor variables); 
 

3. Environmental domain mapping, represented by state-wide pre-clear RE mapping (Version 11). 

The workflow and framework were tested in a trial study located in the Brigalow Bioregion (DES 2020; Figure 8), 
using a mechanistic modelling approach.  The trial study revealed the importance of having adequate (i.e. 
replicated, representative and clean) training data as well as some limitations in the mechanistic modelling 
approach, particularly around the setting of thresholds to demarcate the condition classes. Consequently, for state-
wide application, an alternative machine learning (ML) model approach was also developed. Recent evaluations of 
ML against other approaches for mapping vegetation characteristics from pixels has shown it to be more accurate, 
reliable and easier to automate (Macintyre et al. 2018; Hamylton et al. 2020)  Compared with mechanistic 
modelling, a key advantage of ML is that it can deal with large scale predictions and data issues around multiple 
space and time scales, but disadvantages include a reliance on very large datasets, and causality of input-output 
relationships are less clear (Baker et al. 2018).  
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Figure 6: Overview of the workflow to deliver Spatial BioCondition, a landscape-scale map of vegetation 
condition of terrestrial ecosystems for Queensland 

 

1.6 Project objectives 

There are several policies, strategies and programs in Queensland that will benefit from a seamless, systematically 
and continuously applied representation of vegetation condition for biodiversity across terrestrial ecosystems, 
including; 

• Assessment of native vegetation co-benefits of Queensland-based carbon offset projects under the Land 
Restoration Fund incentive program 

• Identification of priority areas for offsets under the Environmental Offsets Act (2014) 

• Support for the Vegetation Management Act (1999) regarding biodiversity benefits  

• Queensland State of Environment reporting on vegetation condition as well as extent 

• Support for Queensland’s Biodiversity Strategy 

• Threatened species recovery prioritisation for Queensland 

• Support for agri-environment schemes such as carbon farming and environmental stewardship 
 
The objective of Project 4 of the Enhanced Vegetation Mapping and Monitoring program was to establish Spatial 
BioCondition (SBC) - a mapping and modelling framework for the spatial representation of vegetation condition 
across the terrestrial ecosystems of Queensland, an extent of 1.73 million square kilometres and more than 2,842 
mapped vegetation communities. The primary aims of the project were to:  
 

1. Design the framework to be adaptive over space and time, i.e. to allow the incorporation of new spatial 
data as it becomes available; 

2. To align with the conceptual framework of the site-based BioCondition vegetation condition assessment 
i.e. comparison between current state against reference states across all of Queensland’s regional 
ecosystems, with a biodiversity focus; 

3. To produce a prototype, baseline map of vegetation condition across Queensland’s regional ecosystems.  
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2 Mapping vegetation condition for Queensland 

2.1 Study area and currency for Spatial BioCondition (SBC) 

2.1.1 Currency 

This initial or baseline iteration of the SBC modelling framework has been configured to produce a spatial 

representation of vegetation conditions across Queensland’s terrestrial ecosystems as at 2017. This version is 

based on: version 11 Regional Ecosystem mapping; a set of sites used to train and test models; and predictor 

variables, all specifically chosen or optimised to produce an output modelling condition across Queensland as at 

2017.  

2.1.2 Study area 

The mapping method described in this report has been applied across almost the entire state of Queensland, 

Australia (Figure 7). Queensland occupies the north eastern quarter of the Australian continent, with an area of 

1.73 million km2 the state encompasses a broad diversity of climates, landscapes, ecosystems, geologies, soils 

and land uses. Approximately 80% of Queensland’s native vegetation was considered extant in 2017, with 

historical land clearing and fragmentation concentrated in the south eastern quarter of the state (Figure 7). The 

Southeast Queensland, Brigalow Belt and the New England Tablelands Bioregions are considered predominantly 

fragmented landscapes, with more than 50% of the original pre-clear vegetation cleared. The pre-clearing native 

vegetation in Queensland was dominated by a variety of dry eucalypt woodlands and open forests (32% of the 

state); tussock grasslands and forblands (18%); Acacia dominated open forests, woodlands and shrublands (15%); 

Hummock grasslands (3%); wetland communities (2%); and smaller but significant areas of rainforests and scrubs; 

coastal communities and heaths; intertidal communities; wet eucalypt open forests; and Callitris spp. woodlands 

and open forests (Neldner et al., 2019b, DES 2018b). 

 

Figure 7: Study Region – Queensland, Australia. Showing bioregional boundaries, remnant vegetation 
extent in 2017 (green) and vegetation communities not assessed for BioCondition (pink). 
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Land use within the state is dominated by the grazing of introduced stock (80%). Historic and ongoing habitat 
clearing in Queensland has primarily been to support the pastoral industry, and recent clearing rates are highest in 
the eastern portion of the Mulga Lands Bioregion and in the Brigalow Belt Bioregion (Accad et al., 2021). 

The extent of the Spatial BioCondition modelling framework reported on here is based on version 11 Regional 
Ecosystem (RE) mapping (DES 2018a; Queensland Herbarium 2019) which provides a consistent, seamless 
classification and spatial distribution map of pre-clearing and 2017 remnant vegetation communities (ecosystems) 
for the entire state predominantly at a scale of 1:100 000. Version 11 RE mapping describes and maps 2,842 
vegetation communities within 1408 regional ecosystems which are grouped at higher-level classifications into 
Broad Vegetation Groups (BVG) at various scales (DES 2018a; DES 2018b; Queensland Herbarium 2019a).  

The SBC framework was applied to 2,755 of the 2,842 vegetation communities in Queensland representing 99.2% 
of the land area of the state. The 13,366 km2 (0.8%) of the state excluded from all stages of the model framework 
(Figure 7), comprises 51 non-terrestrial and 36 largely unvegetated communities as defined in Appendix 1, these 
communities/areas sit outside the specific remit of this project - to assess all terrestrial vegetation in Queensland. 
This report details the application of the SBC Modelling framework to the full pre-clearing extent of all 2,755 
terrestrial and mappable vegetation communities.  

 

2.2 Collation, assessment and scoring of site data used to train and test 
models 

The predictive power of modelling is critically reliant on the number and quality of points of known condition (site 
data). The large scope of this project necessitated the investment of significant resources in the sourcing, collation 
and assessment of existing site data, identification of data gaps and where possible the collection of new site data. 
We used a hybrid system to set the minimum number of replicate ‘reference’ site data for each vegetation 
community. Communities with fewer reference sites than the prescribed minimum, were set to return no model 
result. For communities with a pre-clearing extent >1600 ha, a minimum of 5 replicates was set based on 
recommendations made by Butler et al. (2020), to have at least 5 samples per strata (to reduce the standard error 
to an acceptable 5% of the BioCondition scoring range). Communities with a pre-clear extent ≤1600 ha, used an 
area weighted sampling minimum. This was based on the recommended minimum ground observation density for 
land surveys at 1:100 000 scale (Neldner et al. 2019a) and is shown in Table 5. 

Table 5: Minimum number of replicates for reference site data  

Map unit pre-clearing 
area (hectares) 

Minimum number of 
replicates 

>1600 5 

1200-1599 4 

800-1199 3 

400-799 2 

<400 1 

 

The collation and assessment of data used to train and/or test the SBC model was a multistep process and 
included: 

• Sourcing existing (candidate) site data from state departmental databases, environmental consultancies, 

local government and national environmental data repositories. 

• Assessment of all candidate data against suitability criteria. 

• Iterative auditing of all data (existing and new, candidate and assessed) and the identification of data gaps. 

• Field survey program to collect new data based on audit results. 

• An expert workshop process to identify potential substitute or supplementary data. 

• A second expert elicitation process for reference sites in identified data gaps. 

• Scoring of training data using the BioCondition scoring method. 

Sections 3.4 and 3.5 describe how the resulting assessed (clean) and scored dataset was partitioned into: training 

data (used to train the SBC model); and testing data (used to evaluate SBC model accuracy). 



16 

2.2.1 Sources of site data 

Candidate sites, site data potentially suitable to train or test the SBC models, were collated primarily from 
ecological databases managed by the Queensland Department of Environment and Science (DES), specifically the 
Queensland Herbarium CORVEG database (CORVEG, 2020) and the Queensland Biodiversity and Ecosystem 
Research Database (QBERD, 2020). Descriptions of these databases including brief descriptions of the survey 
data and links to survey methods and specifications are given in Appendix 5. Site data was also sourced from the 
TERN Ausplots rangelands dataset (AEKOS, 2020) and a range of agencies that kindly shared site data collected 
using standardised (BioCondition) methods, including Brisbane City Council, Bush Heritage Australia and several 
environmental consultancies. 

2.2.2 Assessment of candidate sites  

To maximise data integrity all candidate sites were assessed against a series of assessment criteria, sites failing 

any criterion were excluded. Details of the assessment criteria and candidate site assessment process are 

provided in Appendix 5. In summary sites were selected as candidate sites if they were:  
 

A. Assigned or could reliably be assigned to a valid version 11 regional ecosystem or vegetation community 

(Queensland Herbarium, 2019a); 

B. Identified as being representative of the assigned vegetation community/regional ecosystem by the 

bioregional co-ordinator (see Appendix 1 for definition); 

C. Collected or revisited in the field on or after 1st January 1995; 

D. Identified as reference or BOO sites, and were in areas identified as remnant vegetation in version 11; 

E. Regional ecosystem mapping (DES 2018); 

F. Unique and not duplicated within any of the source datasets; 

G. Recorded with a locational accuracy better than 200m; 

H. Located in patches of homogenous vegetation of at least 90m x 90m, i.e. no closer than 45m to a 

structurally defined edge; 

I. No closer than 90m to any other training site; 

J. Scorable sites in QBERD with enough measured attributes relative to the maximum number of measurable 

attributes for the RE being assessed; 

2.2.3 Data auditing 

Audits of the number of candidate and assessed sites for all 2,755 vegetation communities were conducted 

iteratively. These audits identified priorities for (a) re-checking of existing data with various data curation issues 

preventing sites from passing the assessment criteria (b) field survey effort and (c) expert elicitation processes 

described below (d) benchmark development. 

2.2.4 Field survey 

2.2.4.1 Detailed vegetation condition assessment sites 

Multiple field surveys were undertaken during 2019 and 2020, collecting detailed reference and assessment site 
data as per the BioCondition reference and assessment site methods (Eyre et al. 2015; 2017) as well as vegetation 
survey sites as per Neldner et al. (2019a). Priorities for survey effort were: (a) vegetation communities with large 
extents and insufficient data and (b) vegetation communities with many sites but no BioCondition benchmark to 
enable scoring of the many sites. 

2.2.4.2 Rapid vegetation condition assessment sites 

A rapid field condition assessment method (QVAL) was developed to supplement the number of detailed 

vegetation condition assessment sites (Appendix 7). The QVAL method was developed to align with the 

BioCondition 1,2,3,4 broad condition classification, and to be used in conjunction with available Ecological 

Condition Profiles (Queensland Herbarium 2018b). Ecological Condition Profiles are based on available 

BioCondition RE benchmarks, with the aim to reduce subjectivity in assigning condition classes, where Condition 

Class 1 represents the reference state from which benchmark values are derived.  

Rapid vegetation condition QVAL field assessments were undertaken during the 2019-2020 field survey seasons. 

Sites were predominantly located randomly adjacent to roads while travelling to assess detailed vegetation 

condition assessments, but towards the end of the field collection phase, sites were targeted to fill gaps in the 

training/testing data set. Given the high number (n = 12) of observers using the rapid assessment method and the 

https://www.qld.gov.au/environment/plants-animals/biodiversity/benchmarks#ecological-condition-profiles
https://www.qld.gov.au/environment/plants-animals/biodiversity/benchmarks#ecological-condition-profiles
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potential subjectivity of the approach, we investigated assessor variability and accuracy to confirm if the data 

collected using the method could be reliably used as training or testing data for the models. Full details regarding 

the methods and results of this investigation are given in Appendix 3. In brief, data collected using the QVAL 

method was found to be accurate enough for inclusion as training data for the SBC model. 

2.2.5 Substitute and supplementary data 

A series of bioregional expert elicitation workshops were conducted with bioregional co-ordinators and other 
Queensland Herbarium staff with experience working in each bioregion and were focused on identifying analogous 
vegetation communities within or outside the bioregion (for which we had existing and suitable ‘reference state’ 
data). Data, from the analogous RE’s identified from this process, were then used as substitute or as 
supplementary reference data for communities with insufficient data. Such that a site or group of sites may be used 
as reference data for two or more analogous vegetation communities. 

2.2.6 Investigation of desktop method for acquiring condition site data 

An existing process to validate the SBC model output for the trial study area (see section 2.6.1 & DES, 2020), 
highlighted the possibility of supplementing ‘reference state’ site data with remotely derived ‘desktop’ data. Desktop 
condition training data has been used by the HCAS condition mapping method, although the authors noted the 
limitations of such data and a preference for actual field-based site data (Donohue et al. 2014; Harwood et al. 
2016). The trial study area validation process required multiple assessors to allocate randomly selected points to 
broad condition class based on high resolution satellite image interpretation. To assess the utility of this method for 
acquiring condition site data and to investigate concerns regarding accuracy and variability between assessors, we 
analysed results from the trial area validation process. Full details regarding the method and results of this 
investigation are provided in Appendix 2. In brief, we found the described method unsuitable for both acquiring 
extra condition site data or validating model output and elected to use expert elicitation, described below. 

2.2.7 Reference sites from expert elicitation 

Vegetation communities with insufficient ‘reference state’ data were referred to a second expert elicitation process. 
This second expert elicitation relied primarily on the expert field knowledge of Bioregional Co-ordinators (Appendix 
1) and other experienced staff at the Queensland Herbarium, however for a number of vegetation communities the 
pool of experts was widened, via an invitation on a NRM discussion forum, to include individuals with field 
experience from DES, QPWS, NRM bodies, consulting Ecologists and honorary associates of the Queensland 
Herbarium. Six Bioregional coordinators, one honorary associate and one QPWS ranger provided expert elicited 
sites. This method differs from the method described in section 2.2.6 in that it is tied to in situ field observations that 
validate the vegetation community and the recollection and expertise of the experienced individuals who collected 
those observations to confirm reference condition state. 

Experts were given a list of vegetation communities (prioritised by pre-clear extent) with insufficient data and asked 
to identify, if possible, any previously collected Quaternary site data, (quaternary sites are basic field observations 
of vegetation composition, structure and landscape attributes used to verify RE mapping, Neldner et al. 2019a) or 
other locations that: (a) would pass the assessment criteria A, B, D, E, G and H; (b) they were confident from their 
knowledge of the area that the location was in a reference or BOO condition state; and (c) were guided by the 
provided potential disturbance datasets. The rationale and method used to compile and construct the potential 
disturbances is provided in Appendix 6. 

2.2.8 Scoring 

Cleaned candidate site data that passed all assessment criteria were given a site based BioCondition (Version 2.2) 
score using several methods depending on (a) data type (which attributes have data); (b) collection method (which 
method was used to collect the data); and (c) availability of a BioCondition benchmark to score against. 

2.2.8.1 Detailed sites with BioCondition Benchmark 

Detailed sites (all assessed QBERD and a subset of assessed CORVEG sites, see Appendix 5) attributed to 
vegetation communities with a published or draft BioCondition Benchmark (Queensland Herbarium, 2019c) were 
able to be scored as per the BioCondition assessment framework (Eyre et al. 2015), with resulting site based 
continuous BioCondition scores grouped into broad condition class as outlined in Section 1.3.3. Draft BioCondition 
Benchmarks are completed regional ecosystem benchmarks pending approval by the Bioregional Co-ordinators 
and publication on the Queensland Government website. To increase the number of sites that could be scored 
against a benchmark, both published and unpublished benchmarks were used. For this iteration of the report, 
benchmarks were available for 439 regional ecosystems (291 published and 148 unpublished). 

Data scored using this method had to pass assessment criterion I - Sites had enough measured attributes relative 
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to the maximum number of measurable attributes for the RE being assessed. This was assessed using the ratio of 
the maximum possible site-score (attributes measured) to the maximum possible site-score relevant to the 
ecosystem measured (measurable attributes for the ecosystem type). The criterion threshold varied depending on 
the ecosystem type (from 0.62 to 0.97). In general, ecosystems with fewer measurable attributes had higher ratio 
thresholds, such that training sites in these ecosystems had to have a higher proportion of measurable attributes 
measured to pass the criterion. Sites failing this criterion were excluded from the training dataset. 

2.2.8.2 Detailed sites without BioCondition Benchmark 

Detailed sites attributed to vegetation communities without a published or draft BioCondition Benchmark, (most 

sites from CORVEG, see Appendix 5), were not able to be scored as per the BioCondition assessment framework 

(Eyre et al. 2015). These sites were assumed to be in reference condition (broad BioCondition class 1) based on 

criteria for site selection outlined in Neldner et al. (2019a) unless evidence suggesting otherwise was known. 

2.2.8.3 Other site types 

All rapid condition assessment sites (QVAL sites) had their site condition estimated in the field (by trained and 
experienced recorders), directly into broad BioCondition class. All sites identified through the expert elicitation 
process were assumed to be in reference condition (broad BioCondition class 1) based on the site selection 
process/criteria outlined in section 2.2.7. 
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2.3 Predictor remote sensing variables   

A suite of remotely sensed spatial datasets was collated and tested for use as predictor variables of vegetation 
condition in the Spatial BioCondition modelling framework (Table 6; Appendix 4).  Candidate datasets were 
selected based on the following criteria: 

• Available as a state-wide coverage 

• Metadata and method available or published    

• Available at a scale suitable for our modelling framework 

• Operational and available at future dates 

• Directly related to vegetation characteristics 

These criteria imply that the model predictions and output will be produced statewide across Queensland, both now 
and in the future. The final criterion was determined to be important to avoid spurious correlation between 
vegetation condition and variables not directly related to vegetation condition, e.g. proximity to urban areas may 
improve predictive performance but does so due to secondary interactions with other predictor variables that have 
a direct correlation with vegetation condition. 

Four remotely sensed datasets, some with multiple bands, resulting in a total of 17 potential predictor variables, 
were considered during the modelling process (Table 6). Where these RS datasets were part of a time series 
dataset, the data closest to 2017 (the currency for this project) were selected.  

Table 6: Predictor remote sensing variables 

Remote Sensing dataset Variable name Derivation 

Minimum Foliage Projective Cover, 2016-2017 min_fpc Sentinel 2 

Seasonal persistent green 2017- dry season (June, July, August) persistent_green Landsat 

Seasonal fractional cover, 2017- dry season (June, July, August) 

• Green fraction 

• Bare fraction 

• Dry fraction 

green_fraction 

bare_fraction 

dry_fraction 

Landsat 

Fractional cover statistics, 2015-2018 Green Fraction  

• Minimum 

• Median 

• Maximum 

• Standard deviation 

• Range 

• Coefficient of variability 
 

FC_green_min  

FC_green_med  

FC_green_max 

FC_green_std  

FC_green_range  

FC_green_varcoef 

Sentinel 2 

Fractional cover statistics, 2015-2018 Bare Fraction  

• Minimum 

• Median 

• Maximum 

• Standard deviation 

• Range 

• Coefficient of variability 

FC_bare_min 

FC_bare_med 

FC_bare_max 

FC_bare_std 

FC_bare_range 

FC_bare_varcoef 

Sentinel 2 
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2.4 Modelling framework 

Two competing modelling frameworks were developed to test their potential to produce accurate vegetation 
condition maps; a simple mechanistic model, and a complex machine learning-based model. The mechanistic 
model is based on the HCAS method; it is simple to fit, computationally inexpensive to predict and easy to explain. 
The machine learning model is based on extreme gradient boosting classifiers, requires more input data than the 
mechanistic model, is computationally expensive to fit and complex, making it harder to explain. The final model 
(i.e., the one used to make the spatial predictions) was selected based on the consideration of the above-
mentioned pros and cons together with the model performance. Both models were trained using the same training 
data and evaluated using the same methodology.  

Both models were developed under the same assumption; that is, sites with similar environmental conditions and 
homogeneous vegetation communities should present similar remotely sensed (RS) characteristics. Therefore, any 
difference in RS characteristics between sites with similar environmental conditions and vegetation communities 
can be attributed to the difference in vegetation condition. Thus, the greater the difference in the RS characteristics 
between a particular site and its expected RS characteristics, the worse the condition of the site would be.   

Under this assumption, vegetation condition at a given location is modelled by comparing the RS characteristics at 
that location with the RS characteristics of reference sites. Here the reference RS values are determined from sites 
in good condition (BioCondition class 1) drawn from locations with similar biophysical characteristics. The 
Queensland regional ecosystems (RE) map was used to identify such areas.   

At each reference site 𝑟, 𝑟 = 1, … 𝑛𝑘 , within RE 𝑘, the median of a 90m x 90m window of 𝑗 RS values was 

calculated, creating a dataset of 𝑅𝑆𝑟𝑗𝑘  values. The reference value for RS layer 𝑗 within RE 𝑘 was defined as the 

mean of these values (Equation 1). 

𝑅𝑆̅̅̅̅
𝑗𝑘 =  

∑ 𝑅𝑆𝑟𝑗𝑘
𝑛𝑘
𝑟=1

𝑛𝑘
    (1) 

Consider a set of observed BioCondition classes at locations 𝑖, 𝑖 = 1, … 𝑛, with 𝑛 the total number of observations in 
the training data. Each observation corresponds to one of four classes so that 𝑦𝑖  ∈ {1,2,3,4} and each observation 

falls in exactly one regional ecosystem 𝑘. Modelling the BioCondition class 𝑦𝑖 is performed by estimating the 
relationship between the observed class and distance in RS space of the observation to the reference RS values. 
That is, 

 𝑦𝑖 = 𝑓(𝑑𝑖1, 𝑑𝑖2, … 𝑑𝑖𝐽),     

with 𝑑𝑖𝑗 the relative distance between the RS values for layer 𝑗 at site 𝑖 and the reference RS values, given that site 

𝑖 is in RE 𝑘. We define  𝑑𝑖𝑗 as  

𝑑𝑖𝑗 =
𝑅𝑆𝑖𝑗−𝑅𝑆̅̅̅̅ 𝑗𝑘

max𝑗
,    (2) 

where max𝑗 is the maximum expected value for the 𝑗th remote sensing variable and 𝑑𝑖𝑗  has a valid range from -1 to 

1. Values close to 0 are indicators of good condition while negative or positive values further from 0 are in general 
indicative of poor condition. 

To create the reference and training datasets, 75% of available field data was randomly sampled for training the 
models, with the remaining 25% used to evaluate the performance of the models. Only REs with sufficient 
reference locations as defined in section 2.2 (Table 5) were considered. When missing or insufficient, reference 
locations from analogous REs (identified using the process described in section 2.2.5) were selected. No reference 
data and therefore no predictions were made on REs with insufficient reference sites. 

High correlation between predictor variables is a known issue that affects many different types of models. In most 
cases it doesn't affect the model’s prediction or accuracy, but it may affect the value of the parameters of the model 
and the relative contribution or predictive power of the predictor variables. Therefore, for each pair of highly 
correlated variables, the less important variable was dropped and not considered further in the model. The 
correlation between predictor variables was computed using the Pearson correlation coefficient. Variables were 
considered to be highly correlated if the Pearson correlation index was higher than 0.9. 

2.4.1 Mechanistic model of vegetation condition 

Similar to the field based BioCondition scoring and classification schema detailed in section 1.3.3, the rationale 
behind the mechanistic model was to initially calculate a continuous score, to represent the distance in the RS 
space and then classify that score to match the four BioCondition classes.   

The distance in the RS space for an observation 𝑖 in RE 𝑘 is composed of the individual contribution of each RS 

variable (i.e., 𝑑𝑖𝑗). To be able to combine the contribution of each RS variables in a meaningful way, they need to 
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be scaled consistently. To achieve that, 𝑑𝑖𝑗 was transformed using a logistic function (Eq. 3) 

𝑑𝑖𝑗
′ = (

1

1−𝑒
𝜅𝑗(𝑑𝑖𝑗 − 𝑥0𝑗

)
),       (3) 

where parameters of the logistic function (𝜅𝑗 and 𝑥0𝑗
) were chosen such that the transformed distance for each RS 

layer had a range between 0 and 1.  Values close to 0 indicate a site didn’t show any departure from the reference 
site for that RS variable while a value close to 1 indicate a large difference in RS space for that variable.  

The total distance in the remote sensing space was then obtained by adding the transformed relative differences 
for each of the 𝐽 RS layers,   

𝑑𝑅𝑆𝑖 = ∑ 𝑑𝑖𝑗
𝐽
𝑗 .         (4) 

𝑑𝑅𝑆𝑖 has a theoretical range from 0, representing the best possible condition, to 𝐽, the number of RS layers, which 
represents the poorest condition.  

Finally, the 𝑑𝑅𝑆 values were split into the four broad BioCondition classes using a set of thresholds that maximises 
the agreement between the model and the training data as measured by the F1-score. 

After removing the less important variable of each pair of highly correlated variables, a backwards elimination 
method was applied to obtain a model including as few independent variables as possible, without compromising 
the predictive performance of the model. To achieve this, the independent variables were sorted by their individual 
predictive ability as measured by the f1-score and eliminated from the model starting with the variable with the 
lowest predictive performance until the highest weighted F1-score was achieved. Two slightly different versions of 
this model were trialled; one with state-wide thresholds, and another with a different set of thresholds for each 
bioregion. 

In summary, fitting the model involved finding values for 𝜅 and 𝑥0  for each RS layer and then thresholding 𝑑𝑅𝑆 to 

translate the continuous score into classes using the training data. Predictions on new data at site 𝑖 within RE 𝑘 are 
obtained by computing 𝑑𝑅𝑆 using 𝜅 and 𝑥0 followed by the classification of the continuous score using the 
thresholds obtained in the fitting process. 

2.4.2 Machine learning model of vegetation condition 

In this model, the relative distances in the RS space between each training point and its reference values (𝑑𝑖𝑗) was 

used to fit gradient boosting decision trees (GBDT). In gradient boosting, decision trees are built by splitting 
observations into branches based on feature values. The algorithm looks for the best split which results in the 
largest loss reduction. GBDT training process is gradual, additive and sequential. The algorithm begins by training 
a decision tree in which each observation is assigned equal weight. After evaluating the first tree, the weights of 
observations that are difficult to classify are increased and the weights for those that are easy to classify are 
decreased. The same process is repeated for a specified number of iterations. Subsequent trees help to classify 
observations that are not well classified by the previous trees. Predictions of the final tree ensemble are therefore 
the weighted sum of the predictions made by the previous tree models. The model was implemented in the Rust 
programming language (Matzakis and Klock, 2014) using the LGBMClassifier routine from the LightGBM library 
(Ke et al., 2017). The target values consisted of the BioCondition classes 𝑦𝑖  with 𝑦𝑖  ∈ {1,2,3,4} and 𝑖 = 1, … 𝑛. The 

feature values were the array of relative distances 𝒅 with dimension 𝑛 × 𝐽.  

Hyper-parameters are model parameters that are not directly learnt within the training process but can have a large 
impact on the predictive performance or computational complexity of the model. Typically, models have more than 
twenty hyper-parameters, but, commonly, only a small subset of those have large impacts on the model. We 
searched the hyper-parameter space, considering all the relevant hyper-parameter combinations, for the best 
cross-validation score. Overfitting, i.e., the addition of tree nodes that only describe a small number of observations 
making the model less generalizable, is a common problem in machine learning models (Shaffer 1993). Several 
hyper-parameters that depend on the number of observations and features of the training dataset are available in 
LightGBM to prevent overfitting. Appropriate values for such hyper-parameters were manually selected to prevent 
overfitting. 

After dealing with the correlation between predictor variables, a forward selection method was used to choose the 
smallest possible subset of the remaining independent variables without affecting the predictive performance of the 
model. The process is based on the subsequent addition of variables sorted by importance until the addition of new 
variables does not improve the predictive performance of the model. 

ML models have the reputation of being hard to interpret and are often referred to as 'black boxes'. To counteract 
this, several methods and techniques have emerged in recent years to explain machine learning predictions. The 
SHAP (SHapley Additive exPlanations) method, first introduced by Scott Lundberg and Su-In Lee in 2017, has 
become the most popular method to describe machine learning predictions. SHAP describes the relative impact of 
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features on the predictions of the model by computing the relative impact of each feature on the eventual output of 
the model by comparing the relative effect of the features against the average. The SHAP python module 
(https://github.com/slundberg/shap) was used to compute SHAP values and generate plots.  

2.5 Accuracy assessment 

Two accuracy assessments were undertaken on both, the mechanistic model (MM) and the machine learning (ML) 
model. In both assessment methods the F1-score was chosen as the metric to evaluate the predictive ability of the 
models, comparing actual with predicted classes. The F1-score was computed as the harmonic mean of precision 
and recall. It ranges between 1, indicating perfect precision and recall and 0 if either precision or recall is 0.  

The first accuracy assessment was a state-wide assessment performed using the 25% (5,720) of training sites that 
were withheld from training the model as validation points. The second accuracy assessment was an independent 
validation of model outputs in the trial study area, located within the Brigalow Belt Bioregion (Figure 8; DES 2020). 
In this assessment validation sites were randomly selected using a stratification of the pre-clear RE mapping and 
the condition classification output of an early iteration of the mechanistic model. A minimum of two sites per RE 
were selected for the 1st quartile, three sites for the 2nd, four sites for the 3rd and five sites for the 4th quartile, 
resulting in a total of 344 validation sites.  

Inaccessibility of the randomly selected validation sites severely limited our capacity to validate sites in the field. To 
overcome this limitation, we adopted a remote validation approach where a single observer familiar with the 
ecosystems of the trial study area and BioCondition assessment methods classified each of the 344 validation 
points into one of the four BioCondition classes using: high resolution imagery (Earth-i 2017); aerial photographs; 
disturbance history information; and expert knowledge, in a method similar to that described in Appendix 3. The 
accuracy of the observer’s classifications was first tested against an additional 56 site locations, which had been 
field assessed, scored and classified as per the BioCondition framework (Eyre et al., 2015). The tested accuracy 
for the observer (92%) was considered adequate to assess all 344 independent validation sites using high 
resolution imagery.  

 

Figure 8: Trial study area and the distribution of the 344 independent validation points used to assess 
accuracy of Spatial BioCondition model outputs  
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2.6 Masking 

The SBC Modelling framework was applied to the pre-clearing extent of 2,755 terrestrial and mappable vegetation 
communities. However, the potential for some areas mapped as vegetated in pre-clearing RE mapping to have 
been completely replaced by artificial environments (as at 2017) necessitated some masking of model outputs. 

Areas from within the scope of this project and assessed using the SBC framework, where pre-clearing vegetation 
has been predominantly replaced by artificial environments have been intentionally removed from this iteration of 
the SBC model output using spatial masking. These areas have high spatial and/or temporal variability (from a RS 

perspective) and are not suited to the current scale of the SBC model framework and include: urban and industrial 
areas; and artificial water bodies. 

We defined two spatial masks as follows:  
(a) artificial water bodies - the 2017 extent of ‘water’ (polygons greater than 1 ha only) from version 11 

Regional Ecosystem mapping (DES, 2018a); 

 

(b) identified urban and industrial areas - the combined extent of the following datasets that does not intersect 

with 2017 remnant or high value regrowth (HVR) mapping (DES, 2018a): 
 

• Built up areas (DNMRE, 2020); 

• Queensland Land use Mapping (QLUMP) categories (DES, 2017b; ABARES, 2016): 

o 5.3.0 – Manufacturing and Industrial (Brisbane, Ipswich, Moreton Bay Regional, Redland, Gold 

Coast and Sunshine Coast local government areas only); 

o 5.3.3 – recreation and culture;  

o 5.7.1 – Airports/aerodromes;  

o 5.7.4 – Ports and water transport; 
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3 Results 

3.1 Site Data used to train or test SBC model  

In total 48,012 candidate sites were collated from existing data sources, field survey and expert elicitation. As 
shown in Table 7, 23,536 of these candidate sites passed all assessment criteria, were able to be provided with a 
broad BioCondition class and were considered suitable for use to train and test the SBC model. As part of this total 
are additional field survey data collected as part of this project,iIncluding 231 detailed sites (191 reference sites and 
40 assessment sites), 11,661 sites collected using the QVAL rapid condition assessment method, and 1,858 expert 
elicited sites which were identified by six Bioregional coordinators, two Field Ecologists and one Honorary 
Associate from the Queensland Herbarium as well as one QPWS ranger.  

The rapid assessment sites were evenly spread between the four broad BioCondition classes but were 
predominantly located in the southern half of the state and located along roadsides. Figure 9 shows the distribution 
of: all existing candidate data assessed; data found suitable for use (passed all assessment criteria); and newly 
collected and expert elicited data used. 

Table 7: Number of existing and collected candidate sites; sites suitable for use; and suitable sites in each 
broad condition class and by scoring method 

Source Candidate sites 
Suitable 

sites3 
Broad BioCondition Class  Scoring Method 

 Existing1 Collected2 
Existing 

& 
collected 

Class 1 Class 2 Class 3 Class 4 
Against 

Benchmark4 
Field 

estimate5 Auto6 

corveg 29,817 133 8,522 8,001 500 21 0 1,444 0 7,078 

Qberd 2,897 98 1,292 522 564 159 47 1,292 0 0 

QVAL  12,418 11,661 3,109 3,933 2,297 2,322 0 11,661 0 

Expert7  1,862 1,858 1,858 0 0 0 0 0 1,858 

other 787  203 81 63 36 23 132 0 71 

Total 33,501 14,511 23,536 13,571 5,060 2,513 2,392 2,868 11,661 9,007 

1Total number of collated existing sites that were assessed for suitability.  2Total number of field survey sites and expert elicited sites that were collected as part of 
this project and assessed for suitability. 3Clean existing or collected sites that passed all assessment criteria. 4Eyre et al. (2015). 5As per method described in 
Appendix 7. 6Assumed to be in ‘reference’ state based on criteria for selecting suitable survey site locations, see Neldner et al. (2019a). 7Expert elicited sites as 
described in section 2.2.7 

3.1.1 Site data by vegetation community 

The initial ‘cleaned’ site dataset (prior to expert driven substitution, supplementation, and elicitation of extra 
reference site data) comprised 11,713 suitable ‘reference’ sites (class 1). These were distributed unevenly across 
the 2,755 mapped vegetation communities in Queensland. Table 8 details the number and proportion of vegetation 
communities with sufficient (greater than or equal to the set minimum number of replicates for that RE) suitable 
reference site data; and the proportion of the mappable area of the state that they represent at three stages of the 
data acquisition process.  

The dataset was unevenly distributed across vegetation communities with just over one third (956) of vegetation 

communities having sufficient data. However, the highly skewed area distribution of vegetation communities across 

Queensland meant that the data represented 72% of the mappable area of the state. The process to identify 

substitute or supplementary data from within the existing initial dataset found the equivalent of an extra 4,962 sites 

for 772 vegetation communities, increasing the number of communities with sufficient data by 503 and the area 

able to be modelled to over 77% of the state. The second process to identify extra reference sites through expert 

elicitation and specifically targeted to communities with large spatial extents and insufficient data, resulted in the 

identification of 1,858 sites in 558 vegetation communities increasing the number of units with sufficient data by 

366 and the area able to be modelled to 91% of the mappable area of the state. 
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Table 8: Number of vegetation communities (map units) exceeding the threshold for the minimum number 
of suitable ‘reference’ state sites and the proportion of the mappable area of Queensland they represent 

 Number map units  % map units1  
% of mappable area of 

QLD2  

Initial dataset  956  35  72  

Initial dataset + substitute3   1,459  53  77  

Initial dataset + substitute3 + expert4  1,825  66  91  

1Percentage of the 2,755 mappable vegetation communities. 2Pre-clearing extent for all 2,755 mappable vegetation communities, approx. 1.71 million square km 
(99% of total area of Queensland). 3Reference state site data identified through substitution and supplementation process outlined in section 2.2.5. 4Reference state 
site data identified through the expert elicitation described in section 2.2.7 

 

 

 

Figure 9: Site data (a) All collated existing candidate sites, showing suitable sites (black) and 
unsuitable/rejected sites (pink), and (b) All suitable data (existing (black), collected(red) and expert derived 
(blue) used in SBC model training and/or testing 

  

(a) (b) 
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3.2 Spatial BioCondition Models  

Sufficient training site data was collated to produce Spatial BioCondition Model outputs with a 2017 currency for 
2,267 of the 2,755 vegetation communities (82%), representing 1.54 million km2 and 89% of the state. The 
remaining area was not mapped because it was either outside the scope of the project (i.e. non-terrestrial regional 
ecosystems including ocean, estuary, sand or shallow water), and unvegetated communities as mapped in the 
version 11 pre-clearing extent, and areas of mapped regional ecosystems for which there was insufficient training 
data to return model output. 

3.2.1 Variable selection 

Four pairs of highly correlated variables (where the Pearson correlation coefficient was greater than 0.90) were 
found (Figure 10) in the training dataset. Those were: FC_green_range and FC_green_std (r = 0.97); 
FC_bare_range and FC_bare_max (r = 0.92); FC_bare_range and FC_bare_std (r = 0.94); and dry_fraction and 
bare_fraction (r = 0.93).  

The relative importance of each predictor variable for the MM and ML are shown in Table 9. The less important 
variable of each pair of highly correlated variables were for the MM, bare_fraction, FC_bare_range and 
FC_green_range; for the ML dry_fraction, FC_bare_range and FC_green_range. Those variables were not 
considered further, thus reducing the number of potential predictor variables to 14. 

 

 

Figure 10: Pairwise correlation of predictor variables. Values represent the Pearson correlation coefficient. 
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The accuracy (F1-score) of each trialled model as a function of the number of potential predictor variables included 
in the model is shown in Figure 11. In all models a balance between goodness of fit (F1-score) and parsimony 
(complexity of the model) was reached at an intermediate number of potential predictor variables. In the case of 
both MM models the optimum number of predictor variables was reached when considering four predictor variables 
with an overall accuracy of 0.49 and 0.55 for the state-wide and bioregional model respectively. In both cases, 
considering fewer or more variables had a negative impact on accuracy. The ML model on the other hand, showed 
a positive monotonic trend, reaching a balance between goodness of fit and parsimony at seven potential predictor 
variables with and overall accuracy of 0.65. While the addition of more variables improves the model’s 
performance, that improvement (less than 1% in overall accuracy) wasn’t enough for the extra variable to be further 
considered.   

Table 9: Predictor variable importance for the mechanistic and machine learning models.  

Variable name 
Mechanistic model 
(F1-score) 

Machine Learning 
(SHAP value) 

bare_fraction 0.19 2.47 

dry_fraction 0.23 0.9 

FC_bare_max 0.26 1.3 

FC_bare_med 0.22 1.25 

FC_bare_min 0.29 2.33 

FC_bare_range 0.16 0.93 

FC_bare_std 0.33 2.1 

FC_bare_varcoef 0.24 0.75 

FC_green_max 0.27 1.95 

FC_green_med 0.26 1.83 

FC_green_min 0.29 2.39 

FC_green_range 0.17 1.05 

FC_green_std 0.31 2.69 

FC_green_varcoef 0.28 2.12 

green_fraction 0.24 2.47 

min_fpc 0.36 2.61 

persistent_green 0.27 1.7 

 

 

Figure 11: F1-score per class for different number of independent variables considered for each of the 
three models (solid lines) and number of variables considered in the final model (dashed vertical lines). 
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3.2.2 SBC Model evaluation  

3.2.2.1 State-wide accuracy assessment 

The accuracy of the models was evaluated and compared using the optimal number of predictor variables, those 
were, for the ML model, FC_green_std, min_fpc, bare_fraction, FC_green_min, FC_bare_min, FC_bare_std, and 
FC_green_max and for both MM models FC_green_std, min_fpc, green_fraction, bare_fraction. Table 10 shows 
the precession, recall and F1-score for each BioCondition class and model.  

The ML performed much better than the MM models with a weighted F1-score of 0.65, 18% higher than the best 
MM model (F1-score of 0.55). The bioregional variant of the MM had a slightly higher accuracy (F1-score of 0.55) 
compared to the state-wide variant (F1-score of 0.49). All the models showed balance between precision and 
recall, with less than 2% difference in all cases. 

The extreme classes (Class 1 and 4) were predicted with a much higher accuracy than intermediate classes (Class 
2 and 3) in all models. The three models identified class 1 with the highest accuracy, 0.6, 0.67 and 0.79 for MM-
SW, MM-BR and ML respectively, followed by class 4, 0.51, 057 and 0.71 for MM-SW, MM-BR and ML 
respectively. 

 

Table 10: Evaluation matrix for three models showing precision, recall and f1-score for each class for: (a) 
mechanistic model using state-wide thresholding (MM-SW); (b) mechanistic model using bioregional 
thresholding (MM-BR); and (c) Machine learning model (ML).  

 Precision Recall F1-Score  

Class MM-SW MM-BR ML MM-SW MM-BR ML MM-SW MM-BR ML  Support 

1 0.61 0.65 0.74 0.59 0.69 0.85 0.60 0.67 0.79 3163 

2 0.34 0.39 0.50 0.31 0.34 0.36 0.32 0.36 0.42 1332 

3 0.32 0.32 0.45 0.30 0.36 0.35 0.31 0.34 0.39 630 

4 0.51 0.60 0.70 0.52 0.55 0.72 0.51 0.57 0.71 595 

Weighted 
average 

0.50 0.55 0.65 0.49 0.56 0.66 0.49 0.55 0.65  

 

3.2.2.2 Trial area accuracy assessment 

The second evaluation of model accuracy (using the 344 points in the trial study area) yielded the results shown in 
Table 11. The machine learning model, achieved higher weighted averages than the mechanistic model for 
precision, recall and F1-score, reflecting the result for the state-wide evaluation. For both models, predictions of 
class1 achieved the highest accuracy followed closely by class 4 with classes 2 and 3 considerably less accurate. 

The machine learning model was better at predicting all classes than the mechanistic model, achieving accuracy 
scores between 13 (recall, class 3) and 50 (precision, classes 2 and 3) percent. The overall accuracy achieved by 
both models was lower (27% lower for MM and 13% lower for ML) for this evaluation than the state-wide 
evaluation. Given the substantial difference in prediction accuracy between the mechanistic and machine learning 
models in both assessments, the latter was selected for further analysis and to produce the final SBC prediction. 

Table 11 : Evaluation matrix for the mechanistic (MM) and the machine learning (ML) models using 344 
validation points in the trial study area, showing precision, recall and f1-score for each class.  

  Precision Recall F1-Score   

Class MM ML MM ML MM ML Support 

1 0.55 0.66 0.56 0.64 0.55 0.65 49 

2 0.32 0.48 0.31 0.36 0.31 0.41 101 

3 0.30 0.45 0.30 0.34 0.30 0.39 73 

4 0.49 0.61 0.47 0.64 0.48 0.62 121 

Weighted 
average 

0.41 0.55 0.40 0.49 0.40 0.52 344 
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3.2.3 Effect of independent variables in SBC prediction 

A summary plot showing the average impact of each of the predictor variables in the SBC’s predictions by class is 
shown in Figure 12. Variables are shown in decreasing order of overall importance and the contribution of the 
predictor to the prediction of each class is represented by the length of the bar of the matching colour. The 
predictor that contributed the most to the model’s output was FC_green_std (SHAP = 3.6), followed by min_fpc 
(SHAP = 3.2) and bare_fraction (SHAP = 2.1). The remaining four predictors (FC_green_min, FC_bare_min, 
FC_bare_std and FC_green_max) had a relatively lower overall contribution, with an average impact of less than 
half of the highest contributing variable.  

The average impact that predictors had in predicting a particular class varied among classes. For class 1 and class 
4, the most important predictors were FC_green_std and min_fpc, while the most important predictor for class 2 
and 3 were min_fpc and bare_fraction.  

 

Figure 12: Average impact of each predictor variable on the model output by class. 

 

Even though the summary plot gives important insights about the relative influence of each predictor in the model, 
it doesn’t show how they affect the predictions. The SHAP plot (Figure 13) shows how the values of each 
independent variable changes the logarithm of the odds (SHAP value) of belonging to a particular class. The y-axis 
indicates the predictor variables in order of importance and the colour gradient indicates the value for that variable. 
Each point represents a row in the training dataset. Odds provide a measure of the likelihood of a particular 
outcome. They are calculated as the ratio of the number of events that produce that outcome to the number that do 
not. A log odds value of 0 represents an equal chance of being in the given class (even odds). Positive log odds 
indicate an observation is more likely than not of being in the class. Negative odds indicate an observation is more 
likely to not be in the class. 

In this case, for example, the first row of the first panel, represents the number of trees that predicted class 1 
divided by the numbers of trees that did not for different values of FC_green_std during the training process. High 
values of FC_green_std (red colour) were less likely to be classified as class 1 (negative SHAP values) while low 
values of FC_green_std (blue colour) were more likely to be classified as class 1 (positive SHAP values). Likewise, 
the following observations can be made from the SHAP plot: 

• FC_green_std and min_fpc were the most important variables to predict class 1 and 4. As expected, the 
relationship between the predictor value and class membership was in opposite direction. That is, an 
increase in FC_green_std decreases the probability that the observation is in class 1 and increases the 
probability that an observation is in class 4. Similarly, high values of min_fpc increased the likelihood of an 
observation belonging to class 1 and reduced the likelihood of being in class 4. This pattern also holds for 
class 2 and class 3. 

• Min_fpc was the most important variable to predict class 2 and 3. The relationship between min_fpc and 
class probability is positive for class 2 and negative for class 3. 

• Bare_fraction is the second most important variable for prediction of class 2 and 3. The nature of the 
relationship is less clear than for min_fpc and FC_green_std. Extreme positive or negative values are 
indicative of a lower likelihood of being in both class 2 or 3, but increases the odds of being in class 1. Low 
Bare_fraction values are associated with reduced odds of being in class 4.   
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• The likelihood that an observation was classified as class 1 increased with low values of of FC_green_std, 
FC_bare_std and FC_bare_min, high values of min_fpc and FC_green_max and extreme values of bare 
fractions. 

• The likelihood that an observation was classified as class 2 increased with low values of bare_fraction, 
FC_green_std, FC_bare_std and high values of min_fpc, FC_green_min. 

• The likelihood that an observation was classified as class 3 increased with low values of min_fpc, 
bare_fraction FC_green_min and FC_green_max and high values of FC_green_std and FC_bare_min  

• The likelihood that an observation was classified as class 4 increased with low values of min_fpc, 
FC_green_min and bare_fraction and high values FC_green_std FC_bare_std and FC_bare_min.  

 

 

 

 

Figure 13: Relationship between predictors and SBC class probabilities. Predictors are ranked in 
descending order of importance. Values in the x-axis are the logarithm of the likelihood, with larger values 
indicating a positive increase in probability of being in the relevant class. The colour represents the 
predictor values, ranging from -1 in blue to 1 in red 
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4 Discussion 

4.1 The importance of clean training data  

Model performance (predictive power) is critically reliant on the quantity of training data as well as how well training 
data sites represent both the respective vegetation community and its condition state for Biodiversity (Newell et al. 
2006; McNellie et al. 2015). The large scope of this project required a vast quantity of training data resulting in a 
high reliance on:  

• collating as much existing site data as possible;  

• collecting large numbers of rapid condition assessment sites (QVAL);   

• using expert elicited sites to fill data gaps.  

The success of this data gathering exercise required a careful balance between two competing imperatives: (a) to 
collate as many reference data points as possible; and (b) to maximise the accuracy and quality of the data points 
used. In an ideal situation sufficient training data for all map units would have been collected and scored as per the 
BioCondition method (Eyre et al. 2015) and representative of BioCondition in 2017. Time and resource constraints 
however precluded this possibility. As a result a range of compromises were required to ensure an adequate 
number of samples were obtained for as many map units as possible, meaning that some data which would be 
considered unsuitable in different (better) circumstances was retained for use to train or test the SBC model. These 
compromises (listed below) predominantly deal with BioCondition state for the large numbers of old, unscorable or 
rapidly assessed sites, but also the adequacy of sampling and distribution of sites. 

Restricting data points used to train or test the model to only sites representative of 2017 BioCondition (collected in 
2016 or 2017) would reduce the number of collated existing sites by more than 97% and exclude all rapid validation 
sites, resulting in a 98% reduction in the total number of suitable sites. Additionally, as most (91%) of the existing 
suitable sites and all rapid validation sites were not collected using the full BioCondition methodology, and most 
REs (85%) do not have a published benchmark, restricting data used to train or test the SBC model to sites 
scorable for BioCondition would have excluded more than 71% of existing and all rapid validation sites, resulting in 
an 89% reduction in the total number of suitable site data.  

After checking for obvious disturbances, changes to land use or remnant status, we compromised by making the 
following assumptions about these old, unscorable or rapidly assessed sites and the adequacy and distribution of 
sampling: 

Assumptions: 

1. Unscorable existing sites collected after 1st January 1995 remained representative of a ’reference’ 

BioCondition state in 2017, based on an assumed strict compliance with the site selection guidelines in 

Neldner et al. (2019a) and continued remnant status. 

2. Rapid validation sites (all collected in 2019) were representative of the BioCondition state at each 

respective location in 2017  

3. Rapid validation site recorders’ estimates of overall BioCondition score were consistent and accurate 

representations of the measurable BioCondition at those locations. We tested assessor accuracy and 

variability for rapid validation (see Appendix 3) finding an overall accuracy of 73%. 

4. That five replicates were sufficient as a minimum training data sample size for all vegetation communities 

greater than 1600 ha  

4.2 Modelling vegetation condition 

4.2.1 Accuracy assessment 

The accuracy assessments at both the state-wide level and within the trial study area found similar overall patterns 
of accuracy between the two competing mechanistic and ML models. There was a moderate difference in overall 
accuracy favouring the Machine Learning model, which supported the decision that this model framework would be 
used as the foundation of the Spatial BioCondition framework. 

The moderately lower level of accuracy found using the trial study area evaluation may be a reflection of the 
evaluation method. Our replacement of site-based assessments with desk-top based assessments introduced a 
source of potential error where the observer’s desk-top classification of a validation point may not accurately reflect 
the on ground condition at that point (evaluating against a false value). 

Differences in the spatial distribution between training data points - skewed towards easily accessible locations; 
and validation points - randomised locations, may also be a factor. Model performance may be expected to vary 
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spatially dependent on the density of training data. The state-wide evaluation of model performance used a 
randomly selected subset of the input data, which we can assume exhibits the same distributional characteristics 
as the broader training dataset, resulting in validation points having a distribution skewed toward locations with a 
high density of training data and better model performance. In contrast the trial study area evaluation used 
independent randomised validation points and therefore potentially sampled a greater number of locations with a 
low density of training data and resultant poorer model performance. 

4.2.2 Model Interpretation 

Machine learning models have a reputation for being difficult to interpret. Recent advances, such as the use of the 
SHAP plot (Figure 13) have gone a long way to dispel this aspect. The results from this analysis make intuitive 
sense, with high quality sites characterised as stable over time (represented by low values in FC_green_std), with 
dense woody vegetation (high min_fpc), and overall dense vegetation (low FC_bare_min, high FC_green_max). 
Low quality sites were largely the opposite, characterised by high temporal variation (high FC_green_std, high 
FC_bare_std), often non-woody (low min_fpc), and frequently bare (high FC_bare_min).  Reasons why an 
observation would be more likely to be in classes 2 and 3 are less clear, although class 2 is more likely to have 
higher woody density (min_fpc) than class 3 and is more likely to be stable over time (low FC_green_std) when 
compared to Class 3.  Classes 2 and 3 were also the classes most difficult to classify, with F1-Scores of 0.41 and 
0.39 respectively (see Table 11).  The impact of stability is interesting in these models, with one possible 
interpretation being that areas in good condition tend to be dominated by perennial vegetation, and so the variation 
in signal of vegetation indices would be less than sites with a higher proportion of annuals. 

4.3 Limitations 

1. Ongoing technical advances in remote sensing data capture and increasing resolution will mean that 
modelling and mapped representation of vegetation condition across landscape scales will evolve.  
Consequently, there are limitations around the use of a ‘baseline’ concept regarding Spatial BioCondition 
output. Although future modelling approaches may differ, modelled output will still be comparable. 
However, comparison and interpretation of outputs will be challenging. 
 

2. Obtaining an adequate representation of site data used to train or test the SBC model across Queensland’s 
REs and condition states within the short time frame of the project (2 years) was challenging. 
Improvements made by the project team in cleaning existing data, digital data capture and automating 
condition scoring will assist future iterations. 
 

3. Heterogeneous regional ecosystem polygons – Introduce a level of uncertainty as to which reference 
dataset (expected RS values) to assess against. The SBC model framework can assess an area against 
the expected RS values for all of the polygon’s component REs, however, is currently configured to return 
only the predicted condition for the spatially dominant RE. This is particularly challenging where the 
heterogeneous polygon has no spatially dominant component. 
 

4. The model does not explain the causative links to drivers of change in vegetation condition for use in 
management planning. While the model can be interpreted in terms of the independent predictor variables, 
model outputs, particularly when classified, cannot identify specifically which site-based vegetation 
attributes have been impacted to shift the community away from reference condition.  
 

5. Inaccuracies in the RE mapping potentially have a significant impact on the model. The model relies on this 
mapping to assign the reference RE for each assessment pixel. If the RE is incorrect then so is the 
reference state comparison and model prediction.  
 

6. SBC model restricts site data used for training (and testing) to within a bioregion. The Bioregional expert 
workshops to identify analogous REs suitable for use as substitute or supplementary training data often 
recommended using data from REs in other bioregions. Future iterations of SBC can be re-configured to 
use additional training data from outside the bioregion where specifically recommended by bioregional 
coordinators. 

4.4 Future work  

In the short-term: 
 

• Develop state-transition models for Queensland ecosystems to assist with interpretation of model output 
 



33 

• Test the SBC output with new independent field data.  Potentially in a Queensland case study region that 
aligns with other priorities and keen stakeholders and clients (e.g. Burnett Mary Regional Group). 
  

• Model the continuous BioCondition metric: Trial using a BioCondition continuous score as the response 
variable, rather than the categorical approach. 
 

• Investigate emerging methods to output a spatial probability distribution, to allow predictive uncertainty 
estimation of the SBC model. Examples include Natural Gradient Boosting for Probabilistic Prediction 
(NGBoost; Duan et al. 2020). 
 

• Demonstrate that the method can show temporal change in Spatial BioCondition using 2021 data. 
 

• Incorporate landscape scale habitat variables to the modelled output: Landscape context has long been 
known to have a significant influence on the long-term viability of a patch of vegetation for biodiversity 
values (Andren, 1994; Fahrig, 2001). Landscape context does not only refer to fragmented landscapes with 
sharp or high contrast edged boundaries (e.g. vegetated versus cleared boundaries), but also intact 
landscapes where there are gradients of habitat quality or low contrast edges (e.g. increased grazing 
disturbance with distance from water points). In the BioCondition framework, landscape context attributes 
are included in the overall score of vegetation condition and contribute to 20% to the overall BioCondition 
score. The landscape-level attributes are scored depending upon whether the assessment is within a 
fragmented landscape (where three attributes are assessed - patch size, connectivity and context), or an 
intact landscape (where one attribute, distance to water, is assessed). Currently, modelled output of 
vegetation condition is based on site-based attributes only, and landscape scale habitat condition has not 
yet been incorporated in the modelled outputs.  An innovative approach to represent landscape-scale 
habitat, the Habitat Cost-Benefit Approach (CBA, Drielsma et al., 2007), could be incorporated within the 
model to account for landscape scale habitat condition. The advantage of the CBA method is that it 
provides a value that represents most fragmentation metrics, which are highly correlated (McAlpine and 
Eyre, 2002). It provides a neighbourhood habitat grid (Benefit) which is a measure of habitat value-based 
connectivity to focal cells, and a permeability (Cost) grid, which can be generated from broad vegetation 
classification, such as cleared, regrowth and remnant vegetation. The concept has been applied in New 
South Wales (i.e. combining ecological condition with ecological connectivity) to create ecological carrying 
capacity mapping for the state (Love et al. 2020). 
  

• Operationalise a temporal and spatial reporting framework for Queensland, and continue to work on 
training data capture, given that the ideal (to use training data from the reporting period) is not possible. 
  

In the longer-term (i.e will require more resources and time): 
 

• Address RE polygon heterogeneity: A program within the Queensland Herbarium to reduce the 
heterogeneity of mapped regional ecosystem polygons is in progress, where mixed polygons containing 
regional ecosystems with the highest level of variation in structure (e.g. grasslands and forests) will be 
targeted as the first priority, Currently, two-thirds of the state’s area is represented by heterogeneous RE 
polygons and it is expected that they will continue to form a significant proportion of RE mapping for the 
foreseeable future. Although the Spatial BioCondition modelling method enables the assessment of areas 
for each component RE of a heterogeneous polygon, the model currently only returns the result for the 
proportionally dominant component RE. There is therefore scope to investigate alternative methods for 
incorporating or presenting model results for heterogeneous polygons. 
  

• Continue systematic collection of field-based BioCondition reference and assessment site data and 
generation of BioCondition benchmarks: Ongoing collection and collation of reliable standardised 
BioCondition site data and generation of BioCondition benchmarks will be a priority for modelling, mapping 
and validating vegetation condition across Queensland.   

• Ongoing strategic collection of field-based BioCondition reference sites, refinement and generation 
of additional BioCondition benchmarks enabling scoring of model training data;  

• Focus ongoing systematic collection and collation of field-based BioCondition assessment sites for 
use as training data from within priority Bioregions (Brigalow, Mulga Lands, Southeast 
Queensland, and Reef catchments); 

• Further development and testing of a rapid condition assessment method; 
  

• Fine-scale mapping of woody and non-woody ecosystem transformer weed species: Investigate methods 
to reliably map the distribution of transformer weed species at the scale of the model output (e.g. machine 
learning of high-resolution remote sensing data products)  
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• Collect, collate and integrate spatial pressure datasets: Investigate methods to integrate the compiled 
spatial pressure datasets to adequately inform the vegetation condition mapping, and determine 
approaches to enable these datasets to be dynamic (i.e. matched with the time-series of the condition 
map).  For example, the National Environment Science Program (NESP), Northern Australia Environmental 
Resources Hub project 3.3 has produced draft modelling of areas subject to high risk of impact from 
grazing across Northern Australia (NESP, 2019). At the time of publication these models were still 
undergoing refinement and review. The method appears promising and could potentially be used as an 
input into any future spatial pressure dataset. The index aims to estimate how likely areas are to be used 
for grazing, weighted by how likely appropriate stocking rates are going to be misjudged due to inter-annual 
pasture growth unpredictability and distance to permanent water. Areas with high levels of current grazing 
intensity and with low grazing suitability (low or unpredictable pasture growth) score highly for grazing 
impact risk. Scores were then weighted for distance from permanent water to produce a potential grazing 
impact index (NESP 2019). 

 

5 Conclusion 
• The Spatial BioCondition (SBC) framework presented here enables a comprehensive assessment of 

BioCondition at the state scale for all vegetated terrestrial ecosystems, the framework is aligned 

(integrated) with both the regional ecosystem and the site-based BioCondition frameworks. 

 

• The SBC framework is adaptive such that future advances in remote sensing (new products and/or 

increasing resolution) can be easily incorporated.  

 

• The developed mechanistic model (simple linear combination of relative differences in remotely sensed 

values between an assessment location and its reference) was not sufficient to accurately map 

BioCondition at the state scale with the currently available remotely sensed datasets and site-based 

training data.  

 

• The developed machine learning model (Boosted regression trees) with its higher prediction accuracy 

appears a more appropriate method to map BioCondition at the state scale. Machine learning models are 

much more complex than mechanistic models and have a reputation as being difficult to interpret, however 

new tools (e.g. SHAP) have recently become available that greatly assist in explaining how predictions are 

related to the independent variables, however these still do not explain causative links to drivers of change 

in condition. 

 

• Assessments of overall accuracy for the ML model indicate general suitability for predicting output across 

the state of Queensland, however the accuracy of model predictions will vary spatially due to either limited 

suitable training data or coverage issues with the predictor variables. Therefore, a method to spatially 

represent the reliability of predictions (uncertainty) requires further development. 

 

• Models such as the SBC framework have critical dependencies on large sets of clean training data 

sampling all ecosystems in their various condition states, and Queensland is a massive and highly 

ecologically diverse area. Gaps in the adequacy and representativeness of the current training data 

collated for this project exist. Continuing work is required to satisfy this data imperative, including 

improvements in the efficiency of data collection (improvements to the method for rapid assessment and 

further investigations into collecting BioCondition data remotely) – for locations in both reference and other 

condition states.  

 

• Further work is required to: transition SBC to continuous rather than categorical scoring; incorporate 

landscape context into the framework; operationalise a temporal and spatial reporting schema; improve 

underlying regional ecosystem mapping accuracy. 

We recommend that prior to operationalising a vegetation condition reporting framework for Queensland using 
SBC, further work is required including: 

• Independent validation of the output, possibly within case study area/s currently being set up by other 
programs such as the Australian Agricultural Biodiversity Stewardship pilot program within Queensland 
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• Investigate sensitivity of the SBC to detect change over time 
 

• Determine a method to spatially demonstrate levels of uncertainty in the output 
 

• Address sampling gaps in the training data 
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Appendix 1 Definitions 

Term Description 

Benchmark 

A description, in the form of quantitative values, of a regional ecosystem/vegetation community, 
for each site condition attribute assessed in BioCondition. Benchmarks representing the median 
or average characteristics of a mature and relatively undisturbed ecosystem of the same type, 
across the geographic extent of the Regional Ecosystem, and are derived from data collected at 
reference sites (Eyre et al. 2017). Benchmarks are subject to regular review and updates based 
on additional data. 

Bioregion 

Biogeographic regions are the primary level of classification of land for biodiversity values at both 
the national and state-wide scale. Thirteen bioregions have been defined for Queensland by 
(Sattler & Williams 1999), parts of five bioregions are small extensions of nationally recognised 
bioregions (Thackway and Cresswell 1995).   

Bioregional Coordinator 

An experienced Queensland Herbarium vegetation ecologist responsible for defining, describing 
and mapping regional ecosystems and curating associated field data for all or part of a particular 
Queensland bioregion.  

Connectivity 

Landscape scale spatial pattern of habitat that describes the degree to which habitat patches are 
connected by functional habitat. Connectivity relates to the capacity a species has to disperse 
through the landscape. 

Condition attributes Surrogates or indicators of vegetation structure, function and/or composition 

Crown Cover 
 (CC) 

Sensu Walker and Hopkins (1990) is the percentage of the ground surface covered by the 
vertical projection of the periphery of plant crowns. Crowns are treated as opaque meaning that 
small gaps within the crown are ignored. Crown cover (%) of a stratum is measured for the 
stratum as a whole i.e. ignoring crown overlaps within a stratum. 

Dynamic benchmark 

A description that represents a mature and relatively undisturbed example of a regional 
ecosystem/vegetation community relevant to a particular location and time. Dynamic benchmark 
values for attributes can vary over time based on seasonal conditions.  

Ecologically dominant 
layer (EDL) 

The vegetative layer making the greatest contribution to the overall biomass of the site and the 
vegetation community. 

Foliage Projected Cover 
(FPC) 

Sensu Specht (1981) and Walker and Hopkins (1990) is the percentage of the ground occupied 
by the vertical projection of foliage. This is the same as projective foliage cover (PFC)  

Heterogeneous polygon 

A polygon (area delineated on a map) that has more than one vegetation community or regional 
ecosystem code. Regional Ecosystem mapping products have an upper limit of five codes per 
polygon (Neldner et al. 2019a), and provide the proportion of the polygon represented by each 
code 

Homogeneous polygon A polygon (area delineated on a map) that has only one vegetation or regional ecosystem code. 

Non-terrestrial vegetation 
communities 

Inter-tidal and sub-tidal vegetation communities: including all vegetation communities mapped as 
Landzone 1 in version 11 RE mapping (DES, 2018a). Vegetation communities on Quaternary 
estuarine and marine deposits subject to periodic inundation by marine waters, including 
mangroves, saltmarshes, saltpans, offshore tidal flats, tidal beaches, inter-tidal sedgelands, 
grasslands and herblands as well as areas mapped as ocean and estuary. 

Regional Ecosystem 

A vegetation community or communities in a bioregion that is consistently associated with a 
particular combination of geology, landform and soil (Sattler and Williams, 1999, Neldner et al. 
2019a). The Regional Ecosystem Description Database (REDD) is maintained by the 
Queensland Herbarium and contains the current descriptions of all REs. Regional ecosystems 
and their extents referred to in this document are Version 11 RE mapping products and 
descriptions (DES 2018a; Queensland Herbarium 2019). 

Largely unvegetated 
communities 

A range of ecosystems or vegetation communities that are defined in REDD (Queensland 
Herbarium 2019a) as being dominated by areas devoid of vegetation, including: (a) bare rock on: 
headlands; creek beds; creek banks; and uplands; (b) bare sand in: riverbeds; sand blows and 
on beaches; (c) open water (fresh, saline, estuarine or marine waters) with little emergent 
vegetation; (d) various other bare substrates associated with intermittent, ephemeral or tidal 
waterbodies. 

Vegetation community An area of vegetation which is relatively uniform with respect to structure and floristics. The basic 
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unit in the vegetation community classification within the regional ecosystem classification is the 
plant association or sub-association. A number of vegetation communities may make up a single 
regional ecosystem and are usually distinguished by differences in dominant species 
composition, frequently in the shrub or ground layers and denoted by a letter following the 
regional ecosystem code (e.g. a, b, c) (Neldner et al. 2019a) 
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Appendix 2 Observer accuracy and variation using a desk-
top method to assess BioCondition  

Introduction  
The independent accuracy assessment of SBC model outputs in the trial mapping area, highlighted the possibility 
of supplementing data used to train and test SBC models with remotely derived desk-top visual assessments of 
BioCondition. Systematic attribute-based vegetation condition assessment is resource intensive, thereby restricting 
the number of assessments undertaken. The availability of a cost-effective assessment method able to be rapidly 
applied over large areas would be beneficial. However unstructured visual assessments of overall condition are 
intuitive or subjective and have therefore been criticised for their reliability (Burgman, 2001). Desk-top condition 
training data has previously been used by the HCAS condition mapping method, although the authors noted the 
limitations of such data and a preference for actual field-based site data (Donohue et al. 2014; Harwood et al. 
2016).  

To assess the utility of this method for acquiring condition data and to investigate concerns regarding accuracy and 
variability between assessors we investigated of the use of a desk-top method to assess BioCondition remotely. 
The aims of the investigation were to: 

• Quantify the accuracy or reliability of the desk-top method relative to site-based scores derived using the 
full BioCondition method; 

• Quantify variability between assessors collecting data using this method; 

• Determine if the desk-top method would be suitable for future use to rapidly collect data to train and test 
SBC models. 

Method 

The investigation method required multiple assessors to allocate a set of points to a broad condition class based on 
high resolution satellite image interpretation, expert judgment, and a range of contextual datasets.  

Twenty-four assessors were selected with a range of experience in the use of BioCondition including: seven 
Bioregional coordinators with experience in vegetation survey and mapping, aerial photo and satellite image 
interpretation; seven field ecologists, and four Botanists all with experience in BioCondition assessments or 
vegetation mapping; four Zoologists and two Environmental scientists with experience in BioCondition 
assessments. General experience ranged from six months experience in BioCondition assessments to 40 years of 
experience in vegetation mapping. 

Fifty-four survey locations previously assessed using the BioCondition method were selected from within the trial 
mapping area (DES, 2020) such that they: 

• encompassed a broad range of REs within the trial area (34); 

• were weighted for RE pre-clear extent within the trial area; 

• were conducted as close as possible to 2017 (range 2016-2019); 

• were distributed across the four BioCondition classes but prioritising classes 1 and 2 (class 1 - 19 sites, 
class 2 - 21 sites, class 3 - eight sites, class 4 - six sites); 

For each survey location, all site measurements of BioCondition attributes, final site based BioCondition score and 
BioCondition class were withheld from assessors. In a GIS environment an assessment area surrounding each 
point was generated by applying a 0.5 ha transparent circular buffer, to approximate the same area of assessment 
used in the BioCondition method (Eyre et al., 2015). Assessment areas were checked to ensure vegetation across 
the area was relatively homogenous. 

To assist with the assessment, all assessors were provided with high resolution satellite imagery and a range of 
contextual datasets. The top four datasets listed were mandatory to the process, the remainder provided as a guide 
and their use was optional: 

• High resolution satellite imagery (Earth-i 2017) 

• Definitions of the four BioCondition classes (Table 3) 

• Remnant and pre-clearing version 11 RE mapping dataset (DES, 2018) 

• Regional Ecosystem benchmarks (DES, 2020a) 

• Regional Ecosystem technical descriptions (DES, 2020b),  

• Composite SLATS change dataset for 1988-2017 (DES, 2017a) 

• Fire scar mapping - subset 2015-2017 (DES, 2019b) 
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• Above ground biomass based on 2009 ALOS-1/Landsat/ ICESat data 

• Height of dominant tree layer/EDL based on 2009 ALOS-1/Landsat/ ICESat data 

• Land use mapping 2012-2017 (DES, 2017) 

• Native regrowth distribution modelled on the composite SLATS change layer (DES, 2017a) 

• Existing CORVEG, QBERD, QVAL and Quaternary site data for REs in the trial mapping area (CORVEG, 

2020, QBERD, 2020 & Queensland Herbarium, 2020) 

• Tenure (DNRME, 2020a) 

• Geology - QLD 1:1M and QLD Geology detailed surface, structure and solid 2018 (DNMRE, 2020b) 

Prior to the assessment all assessors were provided with training where they were familiarised with: BioCondition 
classes; photographic examples of a range of communities in the Bioregion in all four condition classes; the 
appearance of example assessment areas; and given an overview of the imagery and contextual datasets 
provided. We recommended assessment of imagery at 1:5,000 scale but assessors were free to inspect imagery at 
other scales. 

Assessors were then asked to independently evaluate all assessment areas (in a GIS environment) by navigating 
to the location of each assessment area and using the provided imagery, contextual data and their 
knowledge/experience allocate each area to a: 

• Regional Ecosystem; 

• BioCondition class of 1-4, relative to the benchmark for the assigned RE; 

• Confidence ranking – indicating their confidence in their allocation to BioCondition class (0-100 in four 
equal classes); 

Completed assessments were collated and the individual accuracy or precision (the level of agreement between 
each assessor’s estimated scores and the measured scores) and overall accuracy of all assessors calculated using 
confusion matrices. The ordinal nature of the data precluded the calculation of coefficients of variation therefore we 
examined variation between assessors by plotting the range of assessor estimates as box plots.  

Results 

Assessor accuracy 

Overall, assessors using desk-top data correctly assigned a BioCondition class with an accuracy of 55.3%, with 
accuracy for individual assessors (producers’ accuracy) ranging from 48% to 92% (Figure 14). One assessor with 
considerable experience in BioCondition assessment and a good knowledge of the trial area scored remarkably 
high (producers’ accuracy of 92%).  

Precision (accuracy of assessors) differed between the four BioCondition classes (Table 12). Classes 1, 2 and 3 
had low precision with roughly half of all cases incorrectly assigned. More class 2 cases (251) were wrongly 
allocated to class 1 than correctly assigned (218), overpredicting class 1. Similarly, classes 2 and 3 achieved very 
low precision with a high number of BioCondition class 3 (46) cases wrongly allocated to class 2. Class 4 was the 
only BioCondition class that assessors could accurately assign desk-top points to. 

Assessor variability 

The range of assessor estimates of BioCondition class for all 54 assessment areas is shown in Figure 15(a-d), 
sorted by BioCondition class measured as per Eyre et al. (2015). Variation between assessors was highest for 
BioCondition classes 2 and 3 and lowest in class 4. Variability between assessors was relatively low for areas 
measured as BioCondition class 1, with assessors mostly agreeing (≤1 assessor disagreeing) on a single class for 
8 areas (42%) or being evenly split between two consecutive classes in a further 6 areas (32%). A notable 
exception being site 3 where assessments were spread over all four classes. There was less agreement between 
assessors in areas measured as BioCondition class 2, with assessors mostly agreeing in a much lower proportion 
of areas (24%), and an increase in the proportion of areas (43%) with assessments spread over three classes. Site 
36 has the least agreement for all classes. The least agreement between assessors as a proportion of assessment 
areas (13%) was in those measured as BioCondition class 3 (13%) which also had the highest proportion of areas 
(50%) with assessments spread over 3 classes. Assessor agreement tended to be best for areas measured as 
BioCondition class 4, with assessors mostly agreeing on a single class for 67% of areas. 
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Figure 14: Individual precision (accuracy) for 24 assessors using a desk-top method to assign assessment 
points to a BioCondition class 

 

Table 12: Confusion matrix for 24 assessors using a desk-top method to assign BioCondition class. 
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BioCondition 
Class 
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1 286 251 18 0 51.5% 

2 137 218 46 3 53.9% 

3 31 27 83 35 47.2% 

4 2 8 21 130 80.7% 

Recall 
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Accuracy) 

62.7% 43.3% 49.4% 77.4%  

 
 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

15 9 12 18 7 13 8 20 14 22 11 23 16 10 17 19 21 4 3 24 5 2 1 6

A
s

s
e

s
s

o
r 

a
c

c
u

ra
c

y

Assessors



44 

 

Figure 15: Boxplots of BioCondition Class allocated by 24 assessors using a desk-top method for (a) 19 
sites measured1 as class 1; (b) 21 sites measured1 as class 2; (c) 8 sites measured1 as class 3; and (d) 6 
sites measured1 as class 4. Boxplots show mean (X), median (--) quartiles and outliers. 1Measured BioCondition 

scores (our point of truth) were obtained by undertaking systematic site based BioCondition assessments as per Eyre et al., (2015), scoring 
against a benchmark and allocating continuous score to BioCondition Class. 

Discussion 

The desk-top method has a lower precision (producer’s accuracy) for all the BioCondition classes than the oblique 
photo-interpretation method described in Appendix 3 (Table 13). With only BioCondition class 4 being reliably 
assigned by the assessors. Based on these low accuracy measures, we found this desk-top method unsuitable to 
collect data to train and test SBC modelling.  

Variation between assessors was highest for BioCondition classes 2 and 3 and lowest in class 4. BioCondition 
class 4 was relatively well defined and understood by all observers and in many cases easier to consistently 
recognise. Classes 2 and 3 can be highly variable and driven by different combinations of attributes many of which 
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(as discussed below) are difficult to assess with this method. 

It is likely that an assessor's ability to score the sites using the desk-top method is strongly influenced by how 
assessable individual key BioCondition attributes are using this method. Attributes such as the crown cover and 
possibly height of the ecologically dominant layer (EDL), and gross disturbance may be reasonably accurately 
interpreted from high resolution imagery by an experienced observer. However, several key BioCondition attributes 
such as: large trees; species richness; non-native plant cover; coarse woody debris; species recruitment; and 
shrub canopy cover are not readily discernible and therefore not assessable using the desk-top method, given the 
scale of available satellite imagery with a state-wide coverage (for examples see Figure 16), thereby simplifying the 
desk-top condition assessment to only one or two attributes. Three of these not assessable key attributes: large 
trees; species richness; and non-native plant cover are heavily weighted in the BioCondition scoring schema (Eyre 
et al., 2015). The difficulty the desk-top method has in assessing these heavily weighted key attributes most likely 
drives the poor overall agreement between BioCondition class assigned using the desk-top method and the 
BioCondition class derived from systematic site-based measurements.  

   

Figure 16: Three examples of assessment points misclassified by most assessors using a desk-top 
method to assign BioCondition class. Red circles denote the 0.5ha buffered assessment area. 

Figure 16 illustrates the issues described above using three examples of areas incorrectly assigned by most 
assessors using the desk-top method. From left to right: (a) most assessors assigned this location to BioCondition 
class 2 or 3 and one to class 4, possibly based on its erroneous mapping as non-remnant, the site based 
measured BioCondition score of 0.82 puts it in class 1, scoring well for large trees, species richness, coarse woody 
debris and recruitment. (b) all but two assessors assigned this location to BioCondition class 1, the site based 
measured BioCondition score of 0.7 puts it in class 2, despite looking intact the location scored poorly for large 
trees, coarse woody debris and had a high abundance of weeds. (c) all but one assessor assigned this location to 
BioCondition class 1 or 2, the site based BioCondition measured score of 0.52 puts it in class 3, scoring poorly for 
large trees, recruitment, coarse woody debris, species diversity and the site had a high abundance of weeds. 

   

Figure 17: Three examples of assessment points illustrating assessor variation using a desk-top method to 
assign BioCondition class. Red circles denote the 0.5ha buffered assessment area. 

Three examples illustrating the range in assessor agreement are shown in Figure 17. From left to right: (a) site with 
poor agreement amongst assessors who allocated the site across all four BioCondition classes, with most 
assessors split between class 1 and 2 but one each assigning it to class 3 and class 4, the site based measured 
BioCondition of 0.85 puts it in class 1; (b) site with very poor agreement amongst assessors (allocated across all 
four classes), the site is a grassland with a site based measured BioCondition score of 0.76 which puts it in class 2. 
A quarter of assessors put this site in class 4; (c) site with complete agreement amongst assessors (class 1) and 
agreement with site based measured score 0.87 which puts it in class 1. 

(a) (b) (c) 

site 39 site 45 site 43 

(a) (b) (c) 

site 28 site 36 site 3 



46 

References 

Burgman M.A. (2005) Risks and Decisions for Conservation and Environmental Management. Cambridge University Press, 
New York. 

Department of Environment and Science. (2017a) Land cover change in Queensland 2015–16: a Statewide Landcover and 
Trees Study (SLATS) report. Brisbane. 

Department of Environment and Science (2017b) Land use mapping series 
http://qldspatial.information.qld.gov.au/catalogue/custom/detail.page?fid={BE30CE16-B1B9-48B1-BF21-
DBE70597FA93} (Accessed November 2019) 

Department of Environment and Science (2018) Biodiversity status of pre-clearing and 2017 remnant regional ecosystems - 
Queensland, Version 11. Queensland Government, Brisbane.   

Department of Environment and Science (2019b). Unpublished dataset: Landsat Count of Detected Fire Scars Queensland 
2015-2017. 

Department of Environment and Science (2020) Queensland BioCondition Mapping Project: Trial Study.  Queensland 
Herbarium and Remote Sensing Centre, Department of Environment and Science, Brisbane. 

Department of Natural Resources, Mines and Energy (2020) Property Boundaries Queensland. Department of Natural 
Resources, Mines and Energy http://qldspatial.information.qld.gov.au/catalogue/custom/search.page?q=DCDB 
(Accessed November 2020) 

Department of Natural Resources, Mines and Energy (2020) Queensland geology detailed web map service. Department of 
Natural Resources, Mines and Energy 
http://qldspatial.information.qld.gov.au/catalogue/custom/detail.page?fid={9AEBDBE7-A451-4293-AB1A-
21658C29387F} (Accessed November 2020) 

CORVEG (2020) Queensland Herbarium CORVEG database (CORVEG). Database managed by the Queensland Herbarium, 
Department of Environment and Science, Brisbane. Most recent access, November 2020  

QBERD (2020) Queensland Biodiversity and Ecosystem Research Database (QBERD). Database managed by the Queensland 
Herbarium, Department of Environment and Science, Brisbane. Most recent access, November 2020 

Queensland Herbarium (2020) Queensland Herbarium QVAL database (QVAL). Database managed by the Queensland 
Herbarium, Department of Environment and Science, Brisbane. Most recent access, July 2020 

  

http://qldspatial.information.qld.gov.au/catalogue/custom/detail.page?fid=%7bBE30CE16-B1B9-48B1-BF21-DBE70597FA93%7d
http://qldspatial.information.qld.gov.au/catalogue/custom/detail.page?fid=%7bBE30CE16-B1B9-48B1-BF21-DBE70597FA93%7d
http://qldspatial.information.qld.gov.au/catalogue/custom/search.page?q=DCDB
http://qldspatial.information.qld.gov.au/catalogue/custom/detail.page?fid=%7b9AEBDBE7-A451-4293-AB1A-21658C29387F%7d
http://qldspatial.information.qld.gov.au/catalogue/custom/detail.page?fid=%7b9AEBDBE7-A451-4293-AB1A-21658C29387F%7d


47 

Appendix 3 Observer accuracy and variation in the rapid 
assessment of BioCondition  

Introduction 

A rapid, visual field vegetation condition assessment method (QVAL; Appendix 7) was developed to provide a time- 
and cost-effective method to supplement the limited number of detailed, measured, systematic vegetation condition 
assessment sites across Queensland. The rapid assessment method was designed to align with the BioCondition 
1, 2, 3, 4 broad condition classes, and data collected using the method contributed to almost half (49.5%) of the 
final set of sites used to train and/or test the SBC models. The rapid assessment data was collected by trained 
Queensland Herbarium botanists and ecologists (n=12) while en route to field study regions throughout 
Queensland. Because of the large contribution that the rapid assessment sites made to the overall site dataset 
used, as well as the relatively large number of observers that contributed rapid assessments, an investigation was 
undertaken to determine the level of subjectivity and repeatability of the rapid assessment method. Specifically, the 
investigation aimed to:  

• Test the overall accuracy of the QVAL rapid assessment method 

• Quantify variability and accuracy between assessors 

Ideally the variability and accuracy of the method and observers would have been tested in the field. However, due 
to time and COVID-19 pandemic travel restrictions a photo-interpretation approach was used as a surrogate test. 

Method 

The photo-interpretation approach required multiple assessors to allocate pairs of oblique site photographs to 

broad condition class using the QVAL survey method. 

We selected 21 Queensland Herbarium staff, with varying levels of experience (six months - 40 years) in Regional 

Ecosystem Mapping and/or BioCondition assessment methods (Neldner et al., 2019, Eyre et al., 2015 and Eyre et 

al. 2017), including six Bioregional coordinators with experience in RE mapping, aerial photo and satellite image 

interpretation; six field ecologists with experience in BioCondition assessments or vegetation mapping; three 

Botanists with experience in BioCondition assessments or vegetation mapping; four Zoologists and two 

Environmental scientists with experience in BioCondition assessments. Level of assessor experience was 

ascertained through a questionnaire asking assessors to self-rank their experience in BioCondition methods, 

vegetation surveys, Regional Ecosystems and other related fields and was used to categorise assessors into two 

classes:  

• ‘expert’ - having more than 10 years' experience conducting BioCondition assessment and reference 

surveys OR at least two years recent experience where most of their daily workload was BioCondition 

related; or  

• ‘non-expert’ - do not meet the definition of ‘expert’.  

Thirty-five survey locations from within the trial mapping area (DES, 2020) that had been previously assessed 
using the BioCondition method (Eyre et al., 2015) were selected from within the trial mapping area (DES, 2020) 
meeting the following criteria: 

• had two oblique photographs, taken at the time of survey, that accurately represented the assessed 
condition rank; 

• a version 11 Regional Ecosystem (Queensland Herbarium 2019) was attributed to the site; 

• were distributed across the four BioCondition classes (Table 3) but prioritising classes 1 and 2 (class 1 - 10 
sites, class 2 - 11 sites, class 3 - nine sites, class 4 - five sites) 

The location, date of survey, attributed Regional Ecosystem, and non-native plant cover (%) was provided to the 
assessors. The BioCondition Benchmarks (DES, 2020a) and technical descriptions (DES, 2020b) for those 
Regional Ecosystems were also made available.  Assessors could refer to remotely sensed products, and imagery 
that would normally be available during QVAL field assessments to assist in their scoring however a specific GIS 
environment was not provided. Assessors could refer to the GIS products provided to complete the desktop 
assessment described in Appendix 2.  

Shortly prior to the assessment all assessors attended a demonstration workshop where the assessment method 

was outlined. Assessors were then asked to independently evaluate each of the 35 survey site photographs 

provided, their expert knowledge/experience, and to allocate each site to a: 
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•  BioCondition class of 1-4, relative to the benchmark for the relevant RE; 

• Confidence ranking, indicating their confidence in their allocation to BioCondition class (0-100 in four equal 

classes); 

Assessors were encouraged to complete the exercise in a rapid manner to simulate rapid collection of data in a 
field situation. 

Once completed the experts estimates of condition class for each of the 35 sites were compared (level of 

agreement) with the condition class generated from the systematic site-based measurement and scoring. 

Measured scores were treated as the true score for that location, allowing us to determine the individual and overall 

accuracy and variation for assessors. Confusion matrices were generated to calculate the overall group and 

individual producer and user accuracies (Precision and Recall), and an independent samples t-test was conducted 

to compare assessor accuracy between the expert and non-expert groups. 

Results 

Overall precision (accuracy) for all 21 assessors was 67.2%. Assessors could more accurately classify condition 
classes 1 and 4 from the photographs (Table 13; Figure 18). The confusion matrix in Table 13 illustrates that the 
precision (accuracy) of assessor’s allocations was high for classes 1 and 4 but low for classes 2 and 3. Class 2 
was frequently incorrectly recognised by assessors as being class 1 (80 cases) and class 4 frequently recognised 
by assessors as being class 3 (72 cases). All assessor’s allocations to class were no more than one condition class 
away from the measured (reference) class except for one misclassification of one class 1 site to class 3. 

Table 13: Confusion matrix showing errors of omission and commission between the different 
BioCondition classes. 
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BioCondition 
Class 

1 2 3 4 
Precision (Producer’s 

Accuracy) 

1 167 42 1 0 79.5% 

2 80 135 16 0 58.4% 

3 0 16 101 72 53.4% 

4 0 0 14 91 86.6% 

Recall (User’s 
Accuracy) 

67.6% 69.9% 76.4% 55.8%  

Expert versus non-expert assessors 

Nine assessors are categorised as non-expert and 12 as expert (Figure 18). The mean accuracy (precision) for 
experts was 72% and for non-experts was 65%. An independent samples t-test found that there was no significant 
difference between the mean accuracy of the two groups (t[11] = 0.117, p = 0.5), and no significant correlation 
between the years of BioCondition experience of the assessors and their accuracy ρ(19) =0.19, p =0.39.  

Spearman’s Correlation (ρ) was also used to ascertain relations between the years of field survey experience of the 

assessors and their accuracy ρ(19) =0.27, p =0.23,  As well as  their years of experience in image interpretation 

(satellite, aerial photography) and their accuracy ρ(19) =0.26, p =0.24. None of these parameters showed 

significant correlations with the achieved accuracy. 

Only 12 of the assessors who took part in this assessment collected rapid condition training data which was used 
to train the model. The mean accuracy for these 12 contributors was 73% (Figure 18). 

Assessor variability 

Variation between assessors in assigning each of the 35 photograph pairs to BioCondition class is illustrated in 
Figure 19 below. As in the desktop assessment (0) Assessor variation was highest for condition classes 2 and 3 
and lowest in condition class 4. Assessors predictions were regularly spread across three condition classes for 
class 2 (54.5%) and class 3 (66.7%). Only two sites were able to be correctly allocated by all assessors using the 
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photo pairs, both in condition class 4. Most (94.2%) of sites had condition allocated across at least 2 condition 
classes 

 

Figure 18: Accuracy for 21 assessors using photos to assess BioCondition classes. Light grey = expert 
assessors and dark grey = non-expert assessors. *Assessors who collected QVAL data used to train and test the SBC models. 

.  

Figure 19: Boxplots of BioCondition Class assessed by 21 assessors using photos for (a) 10 sites 
measured1 as class 1; (b) 11 sites measured1 as class 2; (c) 9 sites measured1 as class 3; and (d) 5 sites 
measured1 as class 4. Boxplots show mean (X), median (--) quartiles and outliers. 1Measured BioCondition scores 

(our point of truth) were obtained by undertaking systematic site based BioCondition assessments as per Eyre et al. (2015), scoring against a 
benchmark and allocating continuous score to BioCondition Class. 
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Discussion 

Overall, assessors could more accurately identify condition classes 1 and 4 from the oblique photographs. These 
condition classes are generally distinctive and well defined (Appendix 7). Depending on the community type being 
assessed the definitions of condition classes 2 and 3 can overlap which makes rapid visual assessment difficult. 
BioCondition represents a continuum and categorising locations into four broad classes eliminates the nuance of a 
“high 2” or “low 3” in which case an assessor may over or underestimate the condition in a rapid visual 
assessment. This reinforces the need for additional information, particularly on vegetation structure and 
composition, for scoring vegetation condition.  

There was an expectation when completing QVAL surveys that the assessor was familiar with the BioCondition 
scoring criteria, weightings, and the benchmark values associated with the regional ecosystem being assessed. All 
of these elements are important for standardised assessment of condition. Because of this we expected that expert 
assessors would have a higher accuracy and would therefore be more reliable when conducting rapid field surveys.  
The lack of a significant difference between the accuracy of assessments completed by expert vs non expert 
assessors and the high proportion of sites where observers allocated condition across two consecutive condition 
classes suggest that other factors may influence the accuracy of the individual assessors, other than experience. 
Limitations which may have influenced an assessor’s ability to score the sites correctly include:  

• A reduced vantage point provided by the two landscape photographs restricting assessment of canopy 
cover and blocking view of objects in the distance or out of frame.  

• No broader context is provided by the photographs which can help to inform condition scoring, assessors 
could refer to additional remotely sensed products to provide this information.  

• There was also difficulty, due to scale, obstruction and image resolution, in identifying the full range and 
cover of individual taxa.  

In situ (field) QVAL assessments do not share these limitations due to the increased mobility of the assessor to 
access different viewpoints. There is also the added benefit of at least one other assessor present with whom to 
discuss the characteristics of the community until a consensus is achieved on the condition class.  

Twelve of the assessors who took part in the oblique photo assessment collected rapid condition assessment site 
data which was used to train or test the SBC model. Three of these assessors were non-expert, however the data 
they contributed was used because:  

• They were partnered in the field with an expert assessor, or; 

• They achieved a high accuracy in the oblique photo assessment indicating that they can accurately rapidly 
assess vegetation condition, or; 

• They conducted assessments in priority ecosystems with limited site data in remote locations 

The rapid field assessment method was found to be a far more accurate measure of vegetation condition than the 
desktop-based assessment of condition (Appendix 2). A rapid visual field assessment therefore merits further 
investigation, with the aim to develop a rapid vegetation condition survey that can be employed by adequately 
trained field personnel. In conclusion data collected using the QVAL method was found to be accurate enough for 
inclusion as training data for the SBC model. 
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Appendix 4 Remote sensing predictor variables 

Introduction 

An initial set of remotely sensed (RS) data were selected for consideration as predictor variables for potential use 
in the Spatial BioCondition modelling framework, and are briefly described in Table 14. This set was compiled 
following advice from experts from the Remote Sensing Centre (RSC) of the Department of Environment and 
Science and the Joint Remote Sensing Research Program (JRSRP).  Before any RS data was taken forward for 
further consideration in the Spatial BioCondition modelling framework, each RS datasets was assessed if: 

1. The data was available as a state-wide coverage; 

2. The metadata and method were available or published;    

3. The data was available at a scale suitable for the proposed modelling framework; 

4. The data would be available at future dates; 

5. The data had been or could be shown to directly relate to vegetation characteristics; 

A subset of the RS data were assessed against field measurements of specific vegetation attributes from existing 
site-based vegetation (CORVEG) and BioCondition survey data (DES, 2020), to provide some insight into the 
potential of the data to act as corollaries of BioCondition attributes (results are presented in Table 14).  

Table 14: Remotely sensed datasets investigated as predictor variables in the Spatial BioCondition 
modelling framework. Datasets that were further considered in the modelling framework are shaded grey. 

1checked and representative CORVEG and/or QBERD sites. The following abbreviations are used: T1 - tallest tree stratum excluding emergent 
trees; CC - Crown Cover; FPC - Foliage Projective Cover; EDL - Ecologically Dominant Layer See Appendix 1 for full definitions. 

Remote 
sensing 
dataset 

Description 
Spatial 
Resolution 

Corollaries with 
BioCondition 
Attribute 

How was the dataset assessed?    
Was it considered further?  

1.Woody extent  

 

Woody extent product based on ~1m 
classification using Earth-i imagery. Min 
mapping unit of 0.5ha, (DES unpublished 
dataset) 

10m 

Wooded / non-
wooded, Tree / 
shrub presence / 
absence 

Visual assessment against high 
resolution satellite imagery (Earth-i 
2017) Not considered further as 
QLD wide coverage was not yet 
available. Failed criterion 1. 

2. Australian 
Woody 
vegetation 
cover  

Best estimate of persistent green cover 
based on annual dry season Landsat 
imagery from 2000 to 2010 (Gill et al. 
2017) 

30m 
Wooded / non-
wooded 

Visual assessment against high 
resolution satellite imagery (Earth-i 
2017).  Discrepancies largely 
attributed to differences in 
scale/resolution. Not considered 
further. Failed criterion 3. 

3. Surface 
reflectance 

Landsat and Sentinel 2 surface reflectance 
imagery with multispectral bands corrected 
to surface reflectance. (Flood et al. 2013) 

10m, 30m 

Species 
diversity, weed 
mapping (eg 
Camphor laurel 
trees) 

Visual assessment against Camphor 
laurel data from the Gold Coast region 
(Ryan, 2018). Potential use for 
mapping exotic tree species in future. 
Not considered further. Failed 
criterion 5. 

   4. Vegetation 
Height 2009  

Vertical plant cover profiles for the 
Australian continent derived through 
integration of ICESat GLAS waveforms 
with ALOS PALSAR and Landsat data 
products (FPC). All available ICESat data 
2003-2009 were used to produce a single 
2009 snapshot of height and cover. 
(Scarth et al. 2019) 

30m Tree height 

This dataset was replaced with spatial 
dataset No. 7 below which has a 
closer correlation with T1 heights. Not 
considered further. Failed criterion 4. 

5. Vegetation 
Crown Cover 

Vertical plant cover profiles for Australia 
derived through integration of ICESat 
GLAS waveforms with ALOS PALSAR and 
Landsat data products (FPC). All available 
ICESat data 2003-2009 were used to 
produce a single 2009 snapshot of height 
and cover. (Scarth et al. 2019) 

30m Crown cover 
Not considered further as more 
contemporary datasets were available. 
Failed criterion 4. 

6. Vegetation 
structure 2009  

Vertical plant cover profiles Australia-wide 
derived through integration of ICESat 
GLAS waveforms with ALOS PALSAR and 

30m 
Structural 
formation 

Visual assessment against RE 
structural code mapping. Not 
considered further. Failed criterion 4. 
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Remote 
sensing 
dataset 

Description 
Spatial 
Resolution 

Corollaries with 
BioCondition 
Attribute 

How was the dataset assessed?    
Was it considered further?  

Landsat data products (FPC). All available 
ICESat data between 2003-2009 used to 
produce a single 2009 snapshot of 
structure (Scarth et al., 2010) 

7. Vegetation 
Height 
derivative for 
T1 

Original ALOS-1 / ICESat derived product 
(no 4 above) re-calibrated by Peter Scarth 
(2019). Site1 height measurements) were 
used to re-model the RS height output to 
represent T1 height only. 

30m 
Tree height for 
T1 

Correlations with Mean T1 height 
measurements at sites1 collected 
during the years 2007-2011. (DES, 
2020). Not considered further. Failed 
criterion 4.   

8. Vegetation 
Crown Cover 
derivative for 
T1 

Original ALOS-1 / ICESat derived product 
(no 4 above) re-worked by Peter Scarth 
(2019). Site1 CC measurements were used 
to re-model the RS CC output to represent 
CC of T1 only (Scarth et al., 2010). 

30m 
Crown cover for 
T1 

Not considered further, as more 
contemporary datasets were available. 
Failed criterion 5.   

9. Seasonal 
Persistent 
Green, Dry 
season only.  

Landsat-based time-series product based 
on min. green fraction. Roughly equivalent 

to FPC. (TERN XWiki, 2020) 
30m 

Total Crown 
Cover 

Correlations with field measurements 
of CC for T1, (where EDL was T1), 
from sites1 collected during the dry 
season (June-August), of 2016-2017 
(DES, 2020). 

10. Minimum 
FPC 

Minimum FPC (MinFPC) based on re-fitted 
woody index and time-series analysis of 
seasonal fractional cover. (DES, 2019) 

10m 
Total Crown 
Cover 

Correlation with field measurements of 
CC for T1, (where EDL was T1) from 
sites1 collected during the dry season 
(June-August), of 2016-2017 (DES, 
2020) 

11. FPC  

Landsat-based FPC prediction based on 
time-series and manual thresholding 
process. Automated product also 
produced for single date data (Armston et 
al.,2009) 

30m 
Total Crown 
Cover 

Not considered further, as an 
operational Sentinel derived product 
was available with better resolution 
(No. 10, Sentinel derived). Failed 
criterion 3. 

12. Seasonal 
Fractional 
Cover (All 
fractions)  

Landsat derived Land cover fractions 
representing the green, non-green and 
bare cover estimates per pixel. 
Operational products available, at least 
one image per standard calendar season. 
(Flood et al. 2013, Scarth et al., 2015) 

30m 
Crown cover / 
FPC / structure 

No relatable field measurements 
available  

13. Seasonal 
Fractional 
Cover (all 
fractions) 

Sentinel 2 derived, green, non-green and 
bare fraction estimates per pixel. Multiple 
products available (Min, Max, Mean, 
Median, SD). (Flood, 2017). 

10m 
Crown cover / 
FPC / structure 

Failed criterion1, Large gaps in spatial 
cover due to cloud, Not considered 
further 

14. Seasonal 
Ground Cover 
(all fractions)  

Landsat derived, green, non-green and 
bare ground cover estimates per pixel. 
Multiple products available (Min, Max, 
Mean, Median, SD) tested against mean 
values for certain seasons. (Trevithick et 
al. 2014) 

30m 
Ground cover, 
green, litter and 
bare ground 

Correlations with field measurements 
of Ground FPC (where EDL was 
ground stratum), from sites1 collected 
during 2015-2017 (dry season). (DES, 
2020). Failed criterion 1. Large gaps in 
spatial cover due to cloud. Not 
considered further 

15. Dynamic 
Reference 
Cover Method 

Landsat derived groundcover comparisons 
between locations and local/regional 
(dynamic) benchmark(s) to give a 
(nominally) climate adjusted metric of land 
cover/land management. Bastin et. al 
(2012) 

30m 
Grazing, Ground 
cover condition 

Not considered further - failed 
criteria 4 and 5. 

16. Fractional 
cover statistics 
(all fractions)  

Sentinel 2 Time series fractional cover 
including: minimum (band1); median 
(band2); maximum (band3); standard 
deviation (band4); range (band5); and 
coefficient of variability (band6). P Scarth 
(2019, pers. com.). 

30m 
Phenology, 
grazing, ground 
cover condition. 

No available field measurements to 
relate. 
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Description of datasets taken forward  

The four RS datasets that fulfilled the selection criteria and were then taken forward for trialling as predictor 
variables in the modelling framework are highlighted in Table 14 and described in the following.  Further 
information on these datasets can be found at TERN XWIKI, Product Pages (2020). 

Seasonal Fractional Cover 2017, Dry season: June-August (Landsat derived) 

Australia wide, Seasonal Fractional Cover has been derived by the Joint Remote Sensing Research Project 
(JRSRP, TERN AusCover) from the analysis of Landsat TM, ETM+ and OLI data at an operational basis. The 
product has a spatial resolution of approximately 30 m, and a temporal coverage from 1986 onwards.  Land cover 
fractions are retrieved by inverting multiple linear regression estimates in a least squares unmixing model (TERN 
XWiki, 2020b), and at least one image per calendar season is produced.   

During the compositing of the seasonal fractional cover product, the method of the medoid is used, for the selection 
of representative pixels of three months (a season) of fractional cover imagery.  The medoid is a multi-dimensional 
equivalent of the median.  Using this method seasonal variability is captured, noise is reduced, and missing data 
due to cloud and shadow, is minimised compared with single date imagery (Flood, 2013).   

The three bands of the dataset represent: 

• Band 1 : Bare fraction representing bare ground, rock and disturbed soil 

• Band 2: Green fraction representing green vegetation 

• Band 3: Non green / dry fraction representing litter, dead leaf and branches  

• Band 4: Model fitting error 

The fractional cover model is well calibrated and validated and the endmembers linked to an intensive field 
sampling program whereby more than 1500 sites covering a wide variety of vegetation, soil and climate types were 
sampled to measure overstorey and ground cover following the procedure outlined in Muir et al (2011). 

Seasonal Persistent Green 2017 (Landsat derived)  

Australian wide coverage of seasonal estimates of persistent green cover, produced once per calendar season, is 
produced from the analysis of Landsat TM, ETM+ and OLI data (30m spatial resolution) by the Joint Remote 
Sensing Research Project (JRSRP, TERN AusCover).  It is derived from the green fraction of the seasonal 
fractional cover time series (TERN XWiki, 2020a) described in the section above. 

The dataset is derived by fitting smoothing splines in multiple iterations per pixel through the full time series of 
seasonal fractional cover (green fraction only). Persistent green fractional cover for each season is estimated from 
the final spline iteration at each seasonal time step. Areas with seasonal fractional cover data gaps (eg due to 
cloud) may produce unreliable estimates of persistent green cover (TERN XWiki, 2020a) 

Ecologically this dataset is intended to estimate the portion of vegetation that does not completely senesce, and 
remains green throughout the year, and primarily consists of woody vegetation (trees and shrubs).  It is related to 
the BioCondition attribute of tree canopy cover. 

Minimum Foliage Projective Cover 2016-2017 (Sentinel derived) 

Queensland wide coverage of Foliage Projective Cover (FPC) - the percentage of ground area occupied by the 
vertical projection of foliage - has been modelled and produced by the Remote Sensing Centre (RSC) operationally 
during the years 1986 – 2014, using Landsat imagery. Lately there was a trial to derive this from higher spectral 
and spatial resolution Sentinel 2 reflectance imagery (10m).   

Flood (pers. com., 2021) described the methodology of producing this unpublished dataset that was used in our 
spatial BioCondition Framework.  In summary the original FPC model (Armston et al. 2009) for Landsat imagery 
was applied to Sentinel-2 imagery, using the Landsat/Sentinel-2 relationship discussed by Flood (2017). To 
overcome issues of cloud cover and shadows, and to create a Qld-wide map of Foliage Projective Cover, seasonal 
composites were produced, using the medoid methods of Flood (2013). A two-year period (8 calendar seasons) 
2016-2017 was used for this dataset which coincided well with the assessment date of the current project. The two-
year period was selected as a timescale relevant to tree growth (Flood pers. com., 2021). 

Finally for each pixel the minimum FPC value over the two year period was allocated, resulting to a minimum FPC 
image for Qld for that period, representing the distribution of woody vegetation. 

This dataset was not recommended for use in situations where the absolute magnitude of FPC is required (Flood, 
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pers. com. 2021), and it may not be continued operationally, but it will be replaced in the future with a revised 
Sentinel 2 derived product. 

Fractional Cover Statistics 2015-2017 (Sentinel derived) 

Time series summaries of the Seasonal Sentinel 2 Fractional Cover (aca stage - seasonal fractional cover from 
surface reflectance inputs) produced by P. Scarth (2019 pers. com.) for the years 2015 to 2017. 

A model originally developed for Landsat imagery (see Landsat derived Seasonal Fractional Cover product - 
above) has been adapted and used to derive land cover fractions representing proportions of green, non-green and 
bare cover from Sentinel 2 imagery to produce a similar 10 m spatial resolution product.  

Temporal statistic products have been derived from the seasonal fractional cover datasets by P. Scarth (2019 pers. 
com.). Those statistics encompassed the: 5th percentile minimum, median, 95th percentile maximum, standard 
deviation, range, and coefficient of variation, for each fraction (green, non-green and bare). 
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Appendix 5 Collation and assessment of existing site data  

Introduction  

The predictive power of modelling is critically reliant on the number and quality of training data points. The large 
scope of this project required an investment of significant resources in the sourcing, collation and assessment of 
existing training data. In this appendix we detail the sources from which we collated existing site data and how we 
vetted the candidate data for suitability. It is important to note that this assessment of candidate data required a 
pragmatic balance between two competing imperatives: (a) to collate as much training data points as possible; and 
(b) to maximise the accuracy and quality of training data. This appendix focuses solely on assessment of existing 
data, site data collected as part of this project is detailed in the results section of this report. 

All spatial analyses were conducted in a Geographic Information System (GIS) and high-resolution satellite 
imagery used for inspecting site locations included: 2017 Earth-i mosaics, 1m resolution; and World Imagery map 
image server provided by ESRI which provides 0.5m Maxar satellite imagery at various dates for Queensland. 
Where doubts existed about the veracity, locational accuracy or representation of sites, they were excluded. 

Method 

The primary sources for existing candidate site data were ecological databases managed by the Queensland 
Department of Environment and Science (DES). Additional data was sourced from the TERN Ausplots rangelands 
dataset and from several agencies who kindly shared site data, collected using standardised (BioCondition) 
methods, including Brisbane City Council, Bush Heritage Australia and several environmental consultancies. A 
brief description of the primary source datasets and the types of site data they hold are provided in Table 15. 

Table 15: Primary source datasets for existing candidate site data 

Dataset  

(reference) 
Description  Notes  

CORVEG 

(CORVEG, 2020) 

Ecological database for site-based 
vegetation data. Sites are used to 
define regional ecosystems and have 
generally been located to describe 
typical examples of vegetation types or 
regional ecosystems in remnant 
condition and the range of variation 
within them. Details regarding types of 
sites, sampling and survey methods are 
provided in Neldner et al. (2019). 

Selected CORVEG sites were for the most part detailed 
site-based observations of vegetation composition, 
abundance and structure within a 50m x 10m quadrat, with 
a measure of basal area (where applicable) and notes on 
landform, landscape context, disturbance, soil and geology. 
A small subset with less detailed floristic information 
(tertiary or quaternary level sites) were still able to meet the 
selection criteria and were included as training data.  

QBERD 

(QBERD, 2020) 

 

Ecological database for a range of 
biodiversity and ecological research 
datasets. QBERD contains two classes 
of sites of utility to this project: (a) 
reference sites - used to derive 
benchmarks; and (b) assessment sites 
– used for assessing condition against 
benchmarks. A detailed explanation of 
the BioCondition assessment 
framework, benchmarks, site selection, 
survey methods and data recorded are 
provided in Eyre et al. (2015; 2017).  

 

BioCondition reference sites are detailed site-based 
observations of vegetation composition, and abundance 
within a 50m x 10m quadrat, with notes on landform, 
landscape context, disturbance, soil and geology. However 
they differ from CORVEG in the following aspects: 
structural attributes are assessed over a larger area (100m 
x 50m); additional information on tree stem diameters, 
coarse woody material and recruitment of tree species are 
collected; and stricter criteria apply for selecting site 
location (restricted to the ‘best on offer’ examples of a 
vegetation community). Assessment sites are similar to 
reference sites but collect less detailed information on 
disturbance and stem diameters. Importantly assessment 
sites can be located in vegetation in any condition state.  

TERN Ausplots 

(AEKOS, 2020) 

Ausplots rangelands dataset, a series 
of environmental plots established for 
long term monitoring. Details regarding 
sites, sampling and survey methods are 
provided in White et al., (2012) 

Detailed site-based observations of vegetation 
(composition, abundance and structure, basal area, leaf 
area index) and soil (composition, characterisation, 
density) within a 100m x 100m quadrat and to 1m deep for 
soil cores. With accompanying notes on landform, 
landscape context, disturbance and geology. 
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BCC 

(Brisbane City 
Council) 

Brisbane City Council, BioCondition 
assessment site dataset for the 
Brisbane City Council local government 
area. Data collected and scored using 
BioCondition method (Eyre et al., 2015) 

As per QBERD assessment sites, above 

 

We assessed all collated existing candidate sites against criteria A-H listed in Table 16. The criteria were designed 
with the explicit aim of improving predictive model accuracy and preventing model degradation through the removal 
of erroneous, conflicting or unsuitable data points. These were identified by assessing for spatial accuracy, 
duplication and proximity issues as discussed in McNellie et al. (2015), as well as for representativeness and 
spatial issues which are specific to the assessment area and modelling framework used in this project. Criterion I is 
specific to the scoring of QBERD sites using the BioCondition assessment framework (Eyre et al., 2015). 
Assessment criteria were applied in the order listed in Table 16, sites failing any applicable criterion were excluded 
from the suitable site dataset. 

It is important to note that the resolution or scale of the modelling framework (dependent on the predictor variables, 
study area and base regional ecosystem mapping) influence the scale of any spatial assessment of candidate 
training data (for example analysis of proximity to a road or another site). The modelling framework described in 
this report used an assessment area of 90m x 90m, (a grid of 9 pixels, each 30m x 30m). The value assigned to 
each training point for each predictor variable is the average of values across the 90m x 90m assessment area.  

On this basis criterion H sets a minimum distance between sites of 90m to avoid training or testing the model on 
data that is conflicting (ie sites representing different units or condition states having overlapping assessment 
areas). Likewise, to prevent large differences within an assessment area criterion G sets a minimum distance of 
45m to a structural edge such as clearings, roads, fence lines, or an abrupt change in vegetation structure. 

Table 16: Selection criteria used to assess candidate training data for suitability.  

Criterion Description  

A 
sites were assigned or could reliably be assigned to a valid, mapped version 11 regional ecosystem or vegetation 
community (Queensland Herbarium, 2019);   

B 
sites were identified as being representative of the assigned vegetation community/regional ecosystem by the 

bioregional co-ordinator (see appendix 1 for Appendix 1 Definitions);   

C sites were collected or revisited in the field on or after January 1 1995 

D 
sites identified as reference or BOO sites were in areas identified as remnant in version 11 regional ecosystem 
mapping (DES, 2018) 

E sites were unique and not duplicated within or between any of the source datasets; 

F recorded geo-referencing accuracy was better than 200m 

G 
sites were in patches of structurally relatively homogeneous vegetation of at least 90m x 90m, ie no closer than 
45m to an edge; 

H 
Sites were no closer than 90m to any other training data site, ie 90m x 90m assessment areas for each training 
point do not overlap; 

I 
Sites had enough measured attributes relative to the maximum number of measurable attributes for the RE being 
assessed.1 

1 Criterion I is specific to the scoring of QBERD sites using the BioCondition assessment framework (Eyre et al., 2015) 

Criteria A and B address the representativeness of the site data with respect to regional ecosystems (REs). The 
SBC modelling framework described in this report uses REs and their mapped extents as environmental domains, 
hence all locations within an REs extent are measured against the reference state site examples for that particular 
RE. The framework described in this report is based on version 11 regional ecosystem mapping and definitions 
(Queensland Herbarium, 2019). It is on this basis that assessment criteria A and B ensure that all suitable sites 
were assigned or reliably assignable to a valid, mapped version 11 ecosystem or vegetation community, and that 
they were considered representative of that community. Non-terrestrial vegetation communities (as defined in 
Appendix 1) were treated as invalid ecosystems and training data for these communities failed at criterion A. 

The use of many existing (archive) site data required decisions regarding the currency of the data (how recent the 
site data is and therefore how well it represents that location in 2017). In assessment criterion C we made a 
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pragmatic decision to restrict the dataset to sites collected or revisited after 01/01/1995. This removed site data 
collected more than 22 years prior to this project. Existing sites where the date of acquisition is unknown (these are 
stored in the databases as collected on 01/01/1900) therefore also failed criterion C and were excluded.  

Assessment criterion D was an additional currency check, consisting of a spatial analysis to identify existing 
candidate sites identified as being in reference condition only that intersected with areas identified as non-remnant 
(cleared and/or disturbed) in regional ecosystem mapping (DES, 2018) at any time since the date surveyed and 
before then end of 2017 (currency of this report). Identified sites were checked against high resolution satellite 
imagery prior to exclusion. Two examples of candidate sites that failed criterion D are shown in Figure 20, in both 
examples the areas were remnant vegetation at the time the sites were undertaken and clearly identifiable as 
having been subsequently cleared.

 

Figure 20: Two examples of existing reference site1 data that failed criterion D, identified as non-remnant in 
2017. On the left is a survey site collected in 2003 where the area has since been cleared and developed for 
housing. On the right is a survey site collected in 1998 where the area has since been cleared and mined. 
1the geo-referenced centre point for each site is represented by a yellow circle and the surrounding box approx. 90m x 90m represents the area 
assessed by the model as representative of the site. 

Spatial errors 

The importance of geo-spatial accuracy when using existing site data in modelling is discussed in McNellie et al. 
(2015). Spatial errors caused by datum shift were reduced by sourcing most existing candidate sites from actively 
curated DES databases where site locations are stored in both the original datum and converted to GDA94 
(WGS84) with mandatory fields recording the source/derivation and approximate accuracy of the location data. 
Where data regarding the source/derivation and approximate accuracy was missing, we examined textual 
information associated with the sites, original field datasheets, reports etc, and where possible contacted 
individuals who collected the data to fill any gaps or resolve any uncertainties.  

Sites with missing locational accuracy data that were collected prior to the widespread uptake of Geographic 
Positioning Systems (GPS) (i.e. sites before 1997) were assumed to have spatial accuracy worse than 200m. 
Those collected after 1997 (earlier if the use of a GPS was recorded) were assumed to have spatial accuracy 
better than 200m. At assessment criterion F all existing candidate sites with a recorded (or assumed) locational 
accuracy worse than 200m were excluded. Figure 21 provides an example of an existing candidate site that fails 
criterion F. In this example the allocated RE and accompanying textual data indicate that the site represents RE 
9.8.7, semi-evergreen vine thicket (SEVT). Examination of high-resolution imagery clearly indicates that the sites 
geo-location places the site outside of SEVT, clearly visible as dark green closed vegetation, and in open Eucalypt 
woodland. 
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Figure 21: Example of an existing candidate site1 that failed criterion F. Site represents semi evergreen 
vine thicket (SEVT) but is geo-located in open eucalypt woodland and away from SEVT (clearly visible on 
imagery as dark green areas). 1the geo-referenced centre point for each site is represented by a yellow circle and the surrounding box 

approx. 90m x 90m represents the area assessed by the model as representative of the site. 

To identify true duplicates, re-visits and near-neighbours a spatial analysis of all candidate sites using the suitable 
minimum distance between sites of 90m was undertaken, associated textual information was examined for sites 
identified by the spatial analysis. Identified true duplicate pairs (or multiples) and re-visits were treated as per 
McNellie et al. (2015), with only the most recent site visit retained for re-visits. Assessment criterion H deals with 
sites identified as near neighbours (<90m distant) these required close examination of their associated textual 
information and location using high resolution satellite imagery.  

Sites identified as near neighbours included some true duplicates and some re-visits which had transcription errors 
in their co-ordinates, these were treated as per McNellie et al. (2015). Unique sites identified as near-neighbours 
that had intentionally or unintentionally been located close together (For example numerous sites sampling various 
closely spaced communities) required pragmatic decisions regarding which to keep and which to remove.  

The use of existing site data as reference state locations to train and test a modelling framework with an 
assessment area of 90m x 90m necessitated some further spatial criteria. Assessment criterion G excludes sites 
within 45m of a structural edge (non-remnant areas, roadsides). Spatial analyses of distances between existing 
candidate sites and (a) non-remnant areas and (b) mapped road/tracks were used to identify problematic sites for 
closer examination of associated textual information and location using high resolution satellite imagery. Sites not 
able to be resolved were excluded. 

 

Figure 22: Three examples of existing site1 data, the left and centre examples fail criteria G, less than 45m 
from an area identified as non-remnant in 2017. On the right is a true duplicate pair, which fail both 
criterion G, (located on the road) and criterion E. 1the geo-referenced centre point for each site is represented by a yellow circle 

and the surrounding box approx. 90m x 90m represents the area assessed by the model as representative of the site. 

A sizable number of candidate sites initially failed criterion G or even D due to their geo-referencing placing the site 
on or close to (<45m from) a road (Figure 22). This was often a result of historical practices or technological 
constraints where survey sites collected immediately adjacent a road or track were unfortunately geo-referenced to 
the survey vehicle location on the roadside (power requirements and slow location fixing in early GPS models 
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favoured in-vehicle usage). Examination of textual information and high-resolution imagery enabled many of these 
to be reliably relocated such that they passed the criteria. This large and resource intensive task highlighted the 
critical importance of both recording accurate site location information and location selection for vegetation survey 
sites.  

Figure 23 provides a visual example of the application of proximity criteria based on assessment area dimensions 
(criteria G and H). Candidate training data from a survey intensively sampling littoral vegetation on a coral cay are 
shown. Eight sites fail criterion H, less than 90m from another site (i.e. those with overlapping boxes), four of these 
also fail criterion G as they are less than 45m from identified non-remnant areas (buildings). Four sites (on 
southern edge of island) fail criterion G (not homogenous across assessment area), with high percentages of their 
respective assessment areas a mix of littoral scrub vegetation, bare areas and ocean. Additionally, the westmost of 
the four sites is also less than 45m from identified non-remnant areas (buildings) and fails criterion H. 

 

  

Figure 23: An example of existing site1 data that fail due to the assessment area dimensions (criteria G or 
H).1the geo-referenced centre point for each site is represented by a green square and the surrounding box approx. 90m x 90m represents the 

area assessed by the model as representative of the site. 

Variation in sampling density 

The survey methodologies for Regional Ecosystem mapping, BioCondition and Ausplots provide specifications for 
the location and density of sample sites (Neldner et al., 2019; Eyre et al., 2017; White et al., 2012), aiming for a 
proportionate geographic distribution and adequate sampling of ecosystems at the bioregional or greater scale. 
Whilst the associated datasets are not necessarily free of any sampling biases, efforts have and continue to be 
made to reduce these where possible. Compatible sampling methods and scales enables CORVEG, QBERD and 
TERN datasets to be easily integrated without introducing extra sampling bias. This was not the case with the 
inclusion of data from projects designed and collected at local scale.  

The inclusion of the BCC dataset, (692 sites) required the exclusion of some otherwise suitable site data for a small 
number of REs. This was to prevent the introduction of any biases resulting from having a high proportion of 
training data concentrated in a few very small locations. Whilst the BCC local government area (LGA) has an area 
of 1,380 km2, less than 40% of this area is classified as natural areas (remnant and regrowth native vegetation) and 
the ‘natural’ area of individual REs may be only a few hundred hectares. Sites sampling these REs may be highly 
concentrated in these very small remnants. For this reason, 296 otherwise suitable sites from the BCC dataset 
were excluded from the final dataset. 

An example of this situation is the RE 12.3.20 - Melaleuca quinquinervia, Casuarina glauca +/- Eucalyptus 
tereticornis, E. siderophloia open forest on low coastal alluvial plains which has a pre-clearing distribution of around 
16,300 ha, occurring from just north of Bundaberg, south to the NSW border. For this RE we were able to collate 
16 suitable sites from CORVEG, distributed across the latitudinal range of the RE (Baffle Creek to the southern end 
of Moreton Bay). From the BCC dataset we collated an extra 30 suitable sites from an area of about 230 hectares, 
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mostly from 2 small areas at Tichi-Tamba reserve (Figure 24) and near Nudgee. To reduce any potential bias by 
having such a large portion (65%) of site data for the RE from just two very small geographic areas a pragmatic 
decision was made to discard 24 of the BCC sites, whilst maintaining a maximal geographic spread amongst the 6 
retained sites. 

 

Figure 24: An example of high site1 density from a dataset collected at a local scale. 1Each sites geo-
referenced centre point is represented by a yellow square and the surrounding box approx. 90m x 90m represents 
the area assessed by the model as representative of the site. 

Results 

A total of 33,499 existing candidate sites were collated. After all spatial analyses, investigations and the application 
of all 10 assessment criteria, 9,828 existing sites were found suitable for use. The total number of collated existing 
candidate sites, the number of these that passed and failed at each criterion and the number that passed all criteria 
are listed in Table 17. It is important to note that many sites fail multiple criteria but are counted here only at the 
first instance of failure. Therefore, the numbers provided in Table 17 are reflective of the order in which criteria 
were applied (A-J). Figure 25 shows the spatial distribution of both the total collated existing candidate site dataset 
and suitable site dataset (the passed all criteria) described in Table 17 by source dataset. 

Many (8,151) candidate training sites (including both collated existing sites and sites newly collected as part of this 
project) were identified as requiring checking against high-resolution satellite imagery or associated textual data 
during the assessment process. This was a time-consuming task. Table 18 details the number and proportion of 
sites identified as requiring checking as well as the number and proportion of checked sites that were: excluded 
from the final dataset; found to be OK, requiring no action and retained; and found to have issues that were 
resolvable such that the site would pass all assessment criteria and retained. 

Table 17: Existing candidate sites, total, number that failed and the number of candidate sites remaining (in 
brackets) at each assessment criterion, listed by source.  

Assessment criteria 1 CORVEG QBERD TERN BCC total 

Total collated existing candidate sites 29,817 2,897 93 692 33,499 

A - valid, mapped version 11 RE  
13,459 

(16,358) 
5 

(2,892) 
4 

(89) 
32 

(660) 
13,500 

(19,999) 

B - representative  
4,564 

(11,794) 
2 

(2,887) 
16 

(73) 
25 

(635) 
4,607 

(15,392) 

C - collected on or after 01/01/1995   
2,093 

(9,701) 
0 

(2,887) 
0 

(73) 
0 

(635) 
2,093 

(13,299) 

D - remnant in version 11 RE mapping (clearing post 
survey)  

371 
(9,330) 

5 
(2,882) 

0 
(73) 

0 
(635) 

376 
(12,923) 

E - not duplicated  
564 

(8,766) 
113 

(2,769) 
0 

(73) 
4 

(631) 
681 

(12,242) 

F - geo-referencing accuracy better than 200m 
99 

(8,667) 
1 

(2,768) 
0 

(73) 
9 

(622) 
109 

(12,133) 
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G - minimum patch dimension 90m x 90m  
208 

(8,459) 
4 

(2,764) 
1 

(72) 
109 

(513) 
322 

(11,811) 

H - proximity to another site >90m  
43 

(8,416) 
0 

(2,764) 
0 

(72) 
84 

(429) 
127 

(11,684) 

I - sufficient scorable attributes3   na 
1,560 

(1,204) 
na na 

1,560 
(10,124) 

J- sampling density4 na na na 
296 

(133) 
296 

(9,828) 

All criteria2 
21,401 
(8,416) 

1,693 
(1,204) 

21 
(72) 

559 
(133) 

23,671 
(9,828) 

1Full descriptions of assessment criteria are given in table 15.  2 The total number that failed any criterion and the number remaining that passed 
all criteria (in brackets). 3Criterion specific to the scoring of QBERD sites only using the BioCondition assessment framework (Eyre et al., 2015). 
4Although not a selection criterion, some BCC site data were excluded based on sampling density. 

Table 18: Site checking efforts, checking of individual collated and collected candidate sites against high 
resolution satellite imagery1, accompanying textual data2 or other datasets. Number and proportion of 
sites: identified and checked; excluded from training dataset after checking; OK and requiring no action; 
and resolvable such that all assessment criteria were passed.  

Number of sites CORVEG QBERD TERN BCC Expert3 QVAL4 total 

Total of existing collated5 and newly 
collected6 candidate sites 

29,950 2,995 93 692 1,862 12,418 48,010 

Identified and checked  
(percentage of total above) 

3,427 
(11.4) 

345 
(11.5) 

93 
(100) 

692 
(100) 

122 
(6.5) 

3,472 
(27.9) 

8,151 
(17.0) 

Excluded  
(percentage of checked sites) 

584 
(17.0) 

43 
(12.5) 

21 
(22.5) 

559 
(80.7) 

4 
(3.3) 

757 
(21.8) 

1,968 
(24.1) 

OK - no action required 
(percentage of checked sites) 

658 
(19.2) 

146 
(42.3) 

42 
(45.2) 

115 
(16.7) 

45 
(36.9) 

1,522 
(43.8) 

2,528 
(31.0) 

Resolvable 
(percentage of checked sites) 

2,064 
(60.2) 

156 
(45.2) 

30 
(32.3) 

18 
(2.6) 

73 
(59.8) 

1,193 
(34.4) 

3,534 
(43.4) 

1Earth-i mosaics for 2107 - 1m resolution; and ESRI World Imagery map image server- 0.5m Maxar satellite imagery at various dates. 2Textual descriptions of site 
location, vegetation community, landscape position etc. recorded when site was collected. 3Expert elicited sites collected as part of this project, described in section 
2.2.7. 4Rapid vegetation condition sites collected as part of this project, described in sections 2.2.4.2 and appendix 7 (Queensland Herbarium, 2020). 5Existing site 
data collated from various data sources see tables 16 & 14. 6New detailed, rapid and expert elicited sites collected as part of this project, described in sections 
2.2.4.1, 2.2.4.2, 2.2.7 and reported in section 5.1. 
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Figure 25: Distribution of collated existing site data by source dataset. Candidate sites in black and 
suitable (used) sites in purple. 
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Discussion 

Existing site data is a valuable and information-rich resource for any large-scale modelling project. That more than 
two thirds of existing data collated as part of this project failed our selection criteria highlights the critical importance 
of data assessment and cleaning, as well as the requirement for projects using existing site data as training input 
for models to devote significant resources to the assessment of existing data. The failure of a large number of 
existing CORVEG sites at criteria A and B highlights the fact that the CORVEG database has historically been a 
data repository for a broad range of data collected using various methodologies, some of which pre-date the 
standardised Regional Ecosystem framework and methods, and project specified cut-off date of 1st January 1995. 
Some of these survey sites either lack sufficient floristic composition and abundance information to be reliably 
allocated to a recognised vegetation community/regional ecosystem or have been in areas considered to be 
transitional or ecotonal under the RE framework. Whilst such sites may contain valuable environmental, distribution 
and compositional data, they have limited utility to a modelling project which is endeavouring to map the vegetation 
condition as it is in 2017.  

The numbers of sites requiring checking or excluded because of proximity to other sites or to structural edges is 
dependent of the resolution or scale of the modelling framework and predictor variables, which defines the 
assessment area. The large assessment area (90m x 90m) used in this project proved problematic for sites 
sampling small or narrow communities or close to structural edges. Future improvements in the resolution of 
remote sensing products will reduce the size of the assessment area, improving model accuracy for small or 
narrow communities as well as significantly reducing the number of sites that need (time consuming) further 
assessment and the number failing proximity related criteria. 
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Appendix 6 Disturbance data to support expert elicitation of 
reference sites  

Introduction 

To assist in the expert elicitation of reference state sites for under sampled vegetation communities or regional 

ecosystems, a suite of datasets representing potential disturbances thought to impact on the reference vegetation 

condition state was compiled. Four disturbance types with suitable spatial indicators were collated/developed. 

These are listed along with their impact on ecosystem condition, and available mapped indicator in Table 19. 

Table 19: Summary of disturbances considered, their impact to biodiversity, and their mapped indicators 

Disturbance Impact Mapped indicator  

Grazing by stock 
 

Soil compaction 
Increased bare ground and associated erosion risk 
Change in species composition and or structure through 
preferential grazing 
Spread of naturalised non-native organisms 
Reduction in habitat features 

Effective distance to water – 
Healy et al (2020) 

Woody vegetation 
disturbance (includes 
broad scale and selective 
removal)  
 

Reduced canopy cover 
Simplified structure, loss of large trees, mechanical 
disturbance to remaining vegetation 
Loss of perennial woody vegetation 
Reduction in habitat features and availability 
Soil compaction 
Change in species composition and/or structure  
Spread of naturalised non-native organisms 
 

Statewide Landcover and 
Trees Study Queensland 
series 1988-2018 (DES 2017a, 
2018a, 2019a) 
 

Excess fire frequency 
 

Too frequent 
Reduced canopy cover 
Simplified structure (including fallen woody material, hollow 
bearing trees) 
Reduced shrub and ground cover 
Change in species composition and/or structure, (loss of 
abundance of slower growing obligate seeders) 
Too infrequent 
Change in species composition and/or structure (increase in 
abundance of species adapted to less frequent fire) 
 

Excess fire frequency dataset, 
derived from an analysis of: 
Landsat Count of Detected 
Fire Scars Queensland (DES 
2019b); Regional ecosystem 
mapping (DES 2018b); 
Regional ecosystem fire 
guidelines (Queensland 
Herbarium 2018b)  

Recent fire 
 

Temporary without further disturbance: 
Reduced canopy cover 
Simplified structure 
Change in species composition and/or structure 

Recent fire dataset, derived 
from an analysis of: Landsat 
Count of Detected Fire Scars 
Queensland (DES 2019b); 
Regional ecosystem mapping 
(DES 2018b); Regional 
ecosystem fire guidelines 
(Queensland Herbarium 
2018b)  

Grazing by stock 

The BioCondition site-based assessment framework includes a surrogate of grazing pressure for intact landscapes, 
which is distance from permanent water (Eyre et al. 2015b). Total grazing pressure (native, feral and stock) has 
been shown to radiate in intensity with distance from water and this pressure surface has been termed a Piosphere 
(James et al. 1999). Piospheres have been shown to influence fauna and flora species assemblages (Landsberg et 
al. 1999; Pringle and Landsberg 2004; Fensham and Fairfax 2008).  

We used a published water availability and water remoteness mapping dataset (Healy et al. 2020) to identify areas 
subject to high grazing pressure due to proximity to a water source, to guide the expert elicitation process. Healy et 
al. (2020) used a spatially explicit method to map access to water across an area of over 700,000 km2 in areas of 
western Queensland with mean annual rainfall < 500mm, through mainly the western drylands. Their study area 
encompassed mostly the Channel Country, Mulga Lands, Mitchell Grass Downs, Northwest Highlands Bioregions, 
where water is a limiting resource. Our assessment of grazing pressure was also restricted to the same area. 
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The spatial dataset produced by Healy et al. (2020) combined existing datasets from multiple sources on the 
location and permanence of natural and artificial waters including springs, rockholes, boreholes, waterholes, 
surface waters, reservoirs and dams. Those were validated using high resolution satellite imagery. Permanence of 
the water sources was calculated for each cell as a percentage of the times water was detected over the total valid 
records derived from 27 years of Landsat data (about 600) for that pixel. Then an algorithm was applied at each 
pixel to produce a spatial dataset of water remoteness as a function of the distance from each water source and 
the permanence of that water source.  This was subsequently weighted by an inverse distance raster layer, and 
thresholded to finally produce a spatial dataset for their study area of “effective distance from water” (EDW). 

We used the EDW dataset to identify areas likely to be subjected to very high grazing pressure. A threshold of 3 
km was used as effective grazing range, based on thresholds developed from empirical data in Queensland 
(Fensham and Fairfax 2008). This approach assumes that an animal seeking water will choose to use the closest 
available water source. 

The extent of area with an EDW less than 3km within the western drylands is shown in Figure 27a, and 
encompasses approximately 387,838 km2, which equates to 49.6% of that area. 

Woody vegetation disturbance  

Broadscale clearing of habitat has a significant impact on terrestrial biodiversity, leading to known decline in 
woodland bird, mammal and reptile species (Reside et al., 2017; Evans 2016; Neldner et al., 2017). Similarly, 
selective tree removal (in the form of thinning for grazing, land management, silvicultural or ecological restoration 
purposes, and logging for timber production purposes) can have adverse effects for biodiversity. Native vegetation 
managed for timber production are typically subject to a predictable suite of habitat modifications, although the 
degree and trajectory of change will depend upon the ecosystem type and the intensity of the activity (Eyre et al., 
2015a).  

The Statewide Landcover and Trees Study (SLATS) has been mapping and reporting on woody vegetation change 
in Queensland using Landsat satellite imagery which dates back to 1988 (DES, 2018a). A composite dataset 
produced by SLATS, representing change in foliage projected cover (FPC) between 1988-2017 including both 
broadscale and selective clearing, was provided to the experts as a potential indication of areas unlikely to be in 
reference condition, and therefore not considered suitable for locating training data points. The extent of 
broadscale or selective woody vegetation clearing identified using SLATS FPC change detection for the period 
1988-2018 is shown in 

Figure 26b and encompasses 100,973 km2, approximately 5.6% of Queensland (Table 19). 

Spatial capture of change in vegetation cover due to thinning and selective logging can be challenging due to 
current limitations of the Landsat imagery used by SLATS and is likely to be under-represented. For example 
SLATS only reported 0.1% change in vegetation cover within remnant vegetation across Queensland in the 1988 to 
2018 composite. It would be useful in future to include information collected through the Queensland Department of 
Agriculture and Fisheries Native Forest Management Units (MUIDs), regarding detailed logging and silvicultural 
thinning history, to augment the data currently obtained through SLATS, which is not systematically captured. 

Excess fire frequency 

A large proportion of ecosystems in Queensland are adapted to fire as a periodic disturbance event. The readily 
measurable (using remote sensing) but possibly temporary disturbance to an ecosystem by fire is discussed in 
section ‘Recent Fire Scar’ below. In the current section we discuss why and how we have included areas with an 
excess fire frequency (burnt more often than recommended) in our disturbance dataset. 

Fire interval, intensity and seasonality act on critical life history processes of species (Whelan, 1995) and are 
recognised as a major determinant of plant species persistence patterns in both northern and south-eastern 
Australia (Williams et al., 2002; Bradstock et al., 2005). The key role plants play in ecosystem productivity, 
structure and as habitat means altered fire regimes may produce a cascade of impacts on biodiversity at all trophic 
levels and altered fire regimes have therefore been identified as one of six key threats to Australia’s biodiversity 
(Natural Resource Management Ministerial Council, 2010). Ecological communities at particular risk from altered 

fire regimes are those dominated by fire sensitive species (e.g. rainforests, softwood scrubs, brigalow (Acacia 
harpophylla) or cypress pine (Callitris sp.) or ecosystems dominated by long-lived species reliant primarily on in situ 
recovery from seed banks (obligate seeders), many semi-arid Acacia dominated ecosystems (mulga (Acacia 
aneura), western bendee (A. catenulata) and lancewood (A. shirleyii)). The method described below identifies, from 
remotely sensed (RS) fire scar mapping, areas within a regional ecosystem that have been burnt more often than is 
recommended for that regional ecosystem, i.e. these areas are defined as having an excess fire frequency. 

Available RS fire scar mapping for Queensland for a 31-year (1987-2017) period enabled an assessment of excess 
fire frequency as a disturbance but is not of sufficient duration to meaningfully assess for deficiency of fire for many 
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regional ecosystems.  

We derived fire regime frequency thresholds for all terrestrial vegetation communities in Queensland from 

published fire guidelines (Queensland Herbarium, 2018a), converting minimum recommended intervals to 

maximum recommended frequencies for a 31-year period; to allow for direct comparison with available fire scar 

mapping. We created a state-wide map of the recommended maximum fire frequency threshold using the 

proportionally dominant threshold value in each regional ecosystem (RE) polygon, where two or more values were 

equally co-dominant, we used the lowest frequency value as a conservative measure to ensure areas possibly 

affected by fire were included. Published fire scar mapping for Queensland - updated to include unpublished 2017 

fire scars detected, was accessed to provide a RS measure of mean fire frequency (count of number of times 

burnt/31) for the period 1987-2017 and for the entire state except for areas of cropping and water that were 

masked as ‘no data’ (2.7% of state). Methods used to produce fire scar mapping and limitations of the data are 

described in detail by DES (2019b).  

The difference between the RS measured mean fire frequency and recommended maximum fire frequency 
threshold was calculated for each 30m grid cell. Where measured fire frequency exceeds the recommended 
maximum frequency mean fire return interval (MFI) must be below the recommended interval at some point in the 
31-year period and we assume that this may translate to a negative impact on condition for biodiversity and the 
area would be unsuitable for inclusion as a location in a reference state.  

Figure 26c shows the 115,954 square kilometres (6.5%) of Queensland where RS measured fire frequency was 

greater than the recommended threshold for maximum fire frequency. Around 62% of the area identified using this 

method is mapped as remnant vegetation. 

Recent fire  

The potential disturbance effects of excessive fire frequency is covered in the section above. The aim of the current 
dataset was to identify areas recently burnt in vegetation communities or regional ecosystems not adapted to high 
fire frequency. Areas adapted to high fire frequency, often grasslands or grass dominated tropical savanna 
ecosystems are expected to show a rapid recovery in plant cover after recent fire and to display little change in 
structure or species composition. Areas not adapted to high fire frequency and affected by recent fire are expected 
to display reduced canopy cover, simplified structure and change in species composition and/or structure. These 
changes may be temporary or long-lasting dependent on subsequent or ongoing disturbances. 

Using minimum recommended fire intervals from published fire guidelines (Queensland Herbarium, 2018a) we 
classified all REs into two ‘fire categories’:  

• Category A – ecosystems where high frequency fire is not recommended or are fire intolerant (minimum 
recommended interval ≥ 3 years);  

• Category B – ecosystems tolerant of high frequency fire (minimum recommended interval < 3 years).  

A statewide map of categories A and B was created using lookup tables to incorporate fire category into version 11 
pre-clear RE mapping (DES, 2018b) and mapped using the proportionally dominant fire category in each RE 
polygon, where both fire categories were equally co-dominant, we chose category A as a conservative measure.  

Remotely sensed fire scar mapping for Queensland for a 3-year period from 2015-2017 (including unpublished 
2017 data; DES, 2019b), was combined to provide a recent fire scar dataset for 97.3% state, excluding areas of 
cropping and water that were masked as ‘no data’ (DES, 2019b). We undertook a spatial analysis of the recent fire 
scar and fire category datasets to identify the intersection of category A and recent fire scar mapping. These 
identified recently burnt areas in REs not adapted to high fire frequencies were not considered suitable for locating 
training data points and are shown in  

Figure 26d. This method identified approximately 67,572 km2 (3.8%) of Queensland as unsuitable for inclusion as a 
location in a reference state, around 74% of which is mapped as remnant vegetation. 
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Figure 26: Four potential disturbance datasets used to guide expert elicited training data. 1 Healy et al., 
(2020), 2DES, (2017a, 2018a; 2019b), 3measured fire frequency > recommended fire frequency 4intersection of fire 
scars (2015-2017) with REs not adapted to high fire frequency (DES, 2019b; Queensland Herbarium, 2018a).  

1 2

3 4(d) Fire scars (2015-17)4 in REs not adapted to high fire frequency
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Conclusion  

Overall 602,809 km2 (34%) of Queensland was found to be impacted by at least one of the mapped indicator 
disturbances described. of which 74% was mapped as remnant vegetation in 2017. This represents 31% of the 
total remnant vegetation of QLD. Identified indicator disturbance areas were flagged during the expert elicitation 
process (described in section 3.3.7), as being potentially unsuitable for the location of reference state training sites. 
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Appendix 7 Draft Rapid Condition Assessment (QVAL) 
Method  

A draft rapid field condition assessment method (QVAL) was developed to facilitate the rapid assessment of 
vegetation condition state-wide and across all land use categories, vegetation types and condition states. The 
method is based on the BioCondition assessment framework (Eyre et al. 2015; 2017) and is similarly tied to the 
Regional Ecosystem (RE) framework (Neldner et al. 2019).  

Prerequisites to the use of this method were: 

(a) a thorough and detailed understanding of the BioCondition Assessment framework, (Eyre et al. 2015; 
2017). 

(b) a thorough understanding of the RE Framework, (Neldner et al. 2019). 
(c) familiarity with the RE’s for the area assessed and their presentation in a range of condition states, 

(Regional Ecosystem Description Database and BioCondition Benchmarks, Queensland Herbarium 2019). 
(d) an understanding of the definitions of remnant, non-remnant and regrowth vegetation under the 

Queensland Vegetation Management Act 1999 
 

The method aligns with the BioCondition 1, 2, 3, 4 broad condition classification, and can be used in conjunction 
with available Ecological Condition Profiles (DES, 2018). To reduce subjectivity, Ecological Condition Profiles for 
regional ecosystems are based on available BioCondition benchmarks, where Condition Class 1 represents the 
reference state from which benchmark values are derived.  

Various iterations of this draft method have recorded a range of attributes; however, the core rapid condition 
assessment attributes are:  

• Site location 

• Regional Ecosystem/vegetation community (Version 11) 

• Broad Condition Class 

• Broad vegetation status 

Assessment site 

The area of assessment for a rapid condition site is the same as for a standard BioCondition Assessment site - 
100m x 50m (0.5ha) and should be homogenous for vegetation community and condition state. The site extent is 
not marked out or measured with a tape but estimated by the user with all assessments made on the vegetation 
within that area. 

Location 

GPS co-ordinates representing the approximate centre point of the assessment area. 

Regional Ecosystem (RE) 

BioCondition assessments are relative to the reference state for the respective RE, it is therefore critical to know 
which RE the assessment site represents. The user will need to assign the assessment area to a valid published 
RE (Queensland Herbarium 2019). The assigned RE should represent the vegetation community present on the 
site. In most cases this will align with the most recent RE mapping but may differ in some circumstances because 
of scale issues or mapping errors. Assigning an RE is a complex interpretation of landscape/landform, substrate, 
geology, floristic composition and vegetation structure using both field and existing land resource information and 
satellite imagery in a GIS environment (sections 3.2.2 and 3.2.3 in Neldner et al 2019). In some cases, advice from 
the Bioregional Co-ordinator may be required. 

Where vegetation has been significantly modified or totally removed it may be difficult to assign a RE, in such 
cases if no field evidence can be found, default to the dominant RE listed for the area in pre-clear RE mapping. 

Broad condition class 

Estimate of the overall condition of the assessment area at the time of survey relative to an inferred reference state 
or ‘benchmark’ for that ecosystem, irrespective of recovery potential. Recorded as a score 1 - 4 as per Table 20 
below. The user must estimate the score for the site relative to their experience of the same RE in a reference 
state. These decisions are open to some interpretation. The Ecological Condition Profiles (DES, 2018) provide 
quantitative guidelines, but are only available for a limited number of REs: 

 

https://www.legislation.qld.gov.au/view/pdf/2017-07-03/act-1999-090
https://www.qld.gov.au/environment/plants-animals/biodiversity/benchmarks%22%20/l%20%22ecological-condition-profiles
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Table 20: QVAL method - Broad condition class 

Score Definition Detailed description 

1 
Good quality remnant, relatively 
intact 

This is mature established vegetation with no or extremely minimal 
disturbance from weeds, fire, grazing, clearing, thinning, fodder harvesting 
or any other disturbance visibly altering the structure (of any layer) or 
species composition of the community away from the expected definition 
outlined by the Regional Ecosystem description. 

  

2 
Degraded remnant or advanced 
regrowth 

Mature established vegetation impacted by disturbance(s) which have 
altered the structure or species composition of the vegetation community. 
Typically the community will still meet the remnant vegetation criteria or be 
high value regrowth (VMA category C) >15 years old. Examples include 
native woodland with a ground layer dominated by *Cenchrus ciliaris or 
Acacia aneura open forest with minor fodder harvesting. 

  

3 
Non-remnant, some attributes 
missing or significantly below BM 
value 

Non-remnant or regrowth native vegetation impacted by disturbance events 
and not meeting the remnant vegetation criteria. Includes young and some 
older regrowth. Some attributes may approach benchmark values however 
other attributes are either missing or significantly below benchmark value. 
(e.g. exotic pastures with paddock trees and coarse woody debris, 
grassland with high exotic cover) 

4 
Non-remnant, Crops, sown 
pastures, requires management to 
restore condition attributes 

Non-remnant exotic dominated vegetation including crops and exotic 
pastures. Low biodiversity and habitat value. Includes: tree crops/orchards, 
exotic pastures with isolated paddock trees. Most attributes are significantly 
below benchmark value 

Broad vegetation status categories. 

The user will need to assign the assessment area to a single broad vegetation status category. These categories 
are based on the definitions of remnant, non-remnant in Box 4, section 3.1 of Eyre et al. (2015), but have split into 
further subcategories based on landuse, floristic composition or age (Table 21). 

Table 21: QVAL method - Broad vegetation status categories 

Code Modified VMA category Detailed description 

Ri Remnant – relatively intact 

Mature established vegetation that meets the remnant vegetation criteria with no or 
extremely minimal disturbance from weeds, fire, grazing, clearing, thinning, fodder 
harvesting or any other disturbance visibly altering the structure (of any layer) or 
species composition of the community away from the expected definition outlined by 
the Regional Ecosystem description 

Rm 
Remnant – modified 
(disturbed) 

Mature established vegetation that meets the remnant vegetation criteria that has 
evidence of modification/ disturbance(s) which have altered the structure or species 
composition of the vegetation community, but not sufficiently to alter its remnant 
status. If woody vegetation: includes where the understorey has been 
modified/altered or weedy; or where the canopy has been modified but the area still 
meets remnant criteria. If non-woody vegetation: includes where species 
composition and or dominant canopy cover have been modified but not to the extent 
that it would be non-remnant. 

Org 
Non-remnant – older native 
regrowth 

Areas where native vegetation has been modified/disturbed to the extent that it does 
not meet the remnant vegetation criteria, and recovery/regrowth has occurred for a 
period of > 15 years. Generally these are areas where there has been significant 
mechanical or chemical disturbance (clearing, poisoning, etc) and native vegetation 
has regrown, but may also include areas of highly modified mature vegetation. 



72 

Yrg 
Non-remnant – young 
native regrowth 

Areas where native vegetation has been modified/disturbed to the extent that it does 
not meet the remnant vegetation criteria, and recovery/regrowth has occurred for a 
period of < 15 years. Generally these are areas where there has been significant 
mechanical or chemical disturbance (clearing, poisoning, etc) and native vegetation 
has regrown 

P 
Non-remnant – no regrowth 
(pasture) 

Areas where native vegetation has been modified/disturbed to the extent that it does 
not meet the remnant vegetation criteria, and no or minimal recovery/regrowth of 
native vegetation observed. Includes: areas where all or most native woody 
vegetation has been removed leaving a native or exotic dominated pasture with no 
recruitment of woody species; non-woody communities which are dominated by 
exotic species. 

C 
Non-remnant – no regrowth 
(non-woody crops) 

Areas where native vegetation has been removed and replaced with non-woody 
crops. e.g. grain crops, vegetable crops, cotton, fodder crops. 

W 
Non-remnant – native 
woody veg. (native 
plantations, macadamia) 

Areas where native vegetation has been removed and replaced with woody crops - 
native species. Includes native timber/forestry plantations (eucalypt, hoop pine, 
melaleuca), Macadamia orchards 

E 

Non-remnant – exotic 
dominated woody veg. 
(pine plantations, weed 
dominated EDL) 
(dominated means >50% of 
the EDLs cover) 

Areas where native vegetation has been removed and replaced with exotic woody 
vegetation.  Includes exotic woody crops (pine plantations, fruit tree orchards, 
Leucaena) and areas dominated by exotic woody weeds (Lantana, Camphor laurel 
etc) 
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