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Glossary 
Albers equal-area projection 

A conic map projection which preserves the area of features. This projection is suitable for use when calculating 
the area of features. 

Clearing activity 

Human activity which results in the full or partial removal or destruction of woody vegetation from an area. 

Foliage projective cover (FPC) 

FPC is defined as the fraction of ground covered by the vertical projection of photosynthetic foliage of all strata 
(Specht, 1983). FPC is a metric that is used in remote sensing (i.e. satellite-based monitoring) as a direct estimate 
of the foliage (or leaves) on vegetation when viewed (vertically or near-vertically) from above, as is the perspective 
of the satellite. Herein, FPC refers to the foliage of woody plants only and is expressed as a percentage where: 0% 
FPC implies there is no woody plant foliage cover; and 100% FPC implies total or complete woody plant foliage 
cover.  

Full clearing 

A human-induced clearing event that results in the complete removal or destruction of woody vegetation, 
converting an area from woody to non-woody (i.e. less than 10% woody crown cover remains). These are areas 
that were mapped as woody in the woody extent map, but the clearing activity has sufficiently removed or 
destroyed enough woody vegetation to render the location non-woody, thus removing them from the woody extent 
map. These areas are included as one of the categories of clearing activity in SLATS reporting.  

Geometric correction 

Also referred to as geo-referencing, this process is used to accurately register satellite images to a ground 
coordinate system.  

Image composite 

An image composite refers to the multi-temporal compositing of image scenes. In the SLATS process, image 
composites are primarily used to address incomplete coverage of a Sentinel-2 tile on any one date due to the 
satellite orbital path, or to replace cloudy areas from one date with clear data from another date to maximise the 
useable data per scene. 

Image mosaic 

An image mosaic, as referred to in the SLATS process, is produced by combining multiple individual image scenes 
to produce a single seamless mosaic for the state of Queensland. 

Partial clearing (major) 

A human-induced clearing event that results in the partial but significant removal or destruction of woody 
vegetation. These are areas where greater than 50% of the woody vegetation has been affected by clearing but the 
area remains woody (i.e. greater than 10% crown cover remains). These areas are included as one of the 
categories of clearing activity in SLATS reporting but remain in the woody extent. 

Partial clearing (minor) 

A human-induced clearing event that results in partial, minor removal or destruction of woody vegetation. These 
are areas where the woody vegetation has been modified but less than 50% of the area has been affected by 
clearing, and it remains woody (i.e. greater than 10% crown cover remains). These areas are included as one of 
the categories of clearing activity in SLATS reporting but remain in the woody extent. 

Radiometric standardisation 

Refers to the process of correcting satellite imagery for atmospheric effects, seasonal differences in reflectance 
due to sun-sensor-ground geometry, and sensor characteristics. This standardisation or correction is particularly 
important for image mosaicking and comparing images over multiple time periods. 

Woody plants 

A plant that produces wood as its primary structural tissue. Woody plants may be trees, shrubs or lianas and are 
usually perennial.  

Woody baseline 

The 2018 map of woody vegetation extent (greater than 10% crown cover and minimum patch size of 0.5ha), which 
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forms the basis for SLATS woody vegetation monitoring, accounting, and reporting. 

Woody vegetation 

Assemblages of woody plants. This includes stands of native vegetation, regrowth following clearing, plantations of 
native and exotic species, and woody weeds.  
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Statewide Landcover and Trees Study – Methodology overview v1.2 

 

1 Introduction 

1.1 Background 

The Statewide Landcover and Trees Study (SLATS) is a scientific monitoring program undertaken by the 
Department of Environment, Science and Innovation (DESI) in partnership with the Joint Remote Sensing 
Research Program (JRSRP) and the Queensland Herbarium and Biodiversity Sciences. The program works 
closely with the Department of Resources which administers the Vegetation Management Act 1999 (VMA). 

SLATS uses satellite imagery and field data to monitor and report changes in woody vegetation extent in 
Queensland and provide information about other woody vegetation attributes such as foliage density and age. 

Data, reporting and other information from SLATS supports the VMA and a range of environment, natural resource 
and disaster management policy requirements and applications. This includes protection and management of the 
Great Barrier Reef (GBR), State of the Environment reporting, the Regional Ecosystem mapping framework, 
biodiversity conservation, fire management and planning, and natural capital and environmental accounting 
initiatives. 

1.2 Objectives of SLATS 

The primary objective of SLATS is to monitor, map and account for changes in the extent of woody vegetation 
across the state of Queensland on an annual basis. This includes documenting the current extent and monitoring 
and mapping changes to that extent due to human-induced land clearing and natural or human-induced regrowth.  

A secondary objective is to provide additional data and information about the type of clearing activity and its 
purpose, and also about the density and age of the vegetation that currently exists, is being cleared, or is 
regrowing. Where possible, SLATS will also map losses or disturbances to woody vegetation through natural 
causes such as cyclone damage or fire. 

SLATS is complemented by other land cover change monitoring for ground cover and fire scars, and the Early 
Detection System—a regular, targeted, monitoring and proactive compliance tool which also supports the VMA. 

1.3 Historical changes to SLATS methodology 

SLATS monitoring and reporting methodology, up to and including the 2017-18 report, was primarily based on 
Landsat satellite imagery, and focussed on woody vegetation clearing mapping. From 2018-19 onwards, SLATS 
has used a completely revised methodology that is primarily based on Sentinel-2 satellite imagery. This 
methodology incorporates additional monitoring and mapping components, including a woody vegetation extent, 
and woody vegetation regrowth.  

Due to the revision of the SLATS methodology, including the transition from Landsat to Sentinel-2 satellite imagery, 
SLATS reporting and data from 2018-19 is not directly comparable with reporting and data up to, and including, the 
2017-18 SLATS report. However, as part of SLATS revisions a separate scientific study was undertaken to provide 
clearing estimates that were more comparable with previous SLATS reporting. An overview of the methods 
developed for that study are provided in the Appendix (Section 6). 

1.4 Purpose of this document 

The purpose of this document is to provide an overview of the current SLATS methodology which is based 
primarily on Sentinel-2 satellite imagery. 

1.5 Independent peer review 

The current SLATS methodology was the subject of a comprehensive independent peer review in 2021. The review 
was led by CSIRO and included experts in remote sensing, ecology, and natural resource management. 

The review considered the science underpinning the program and its effectiveness in supporting environment and 
natural resource information requirements. It found that the methods are appropriate and consistent with best 
practice scientific reporting, and that the program will have ongoing impact for environment and natural resource 
management in Queensland. The review made a number of recommendations for further (or future) improvements, 
and these are being addressed where appropriate, and as time and resources permit.  

https://www.qld.gov.au/environment/plants-animals/plants/herbarium
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2 The SLATS monitoring and reporting framework 

2.1 Scope and key definitions 

2.1.1 In scope 

In general, SLATS monitors woody vegetation in line with the definition of vegetation in the VMA, which defines 
vegetation as woody native trees or plants, except for mangroves which are protected under other legislation. Due 
to the difficulty of discriminating native and non-native woody vegetation in the landscape using satellite imagery, 
non-native woody vegetation change is also included in SLATS monitoring and reporting (refer to Section 2.1.2.1 
for details regarding this). 

The scope of SLATS is to maintain a map of the current extent of woody vegetation in Queensland by monitoring 
and mapping annual changes to that extent due to human-induced land clearing and natural or human-induced 
regrowth. This is limited by what can be reliably identified and mapped using Sentinel-2 satellite imagery, but also 
informed by other data sources, including Landsat time-series, very high-resolution satellite imagery, and field 
verification. 

SLATS also aims to determine the type of clearing activity and its purpose and to estimate the density of the 
vegetation that currently exists, is being cleared, or is regrowing. Time-series methods are also used to estimate 
the time since the woody vegetation was last disturbed and, where possible to detect, the time since it had started 
to regrow following a disturbance event.  

An initial baseline woody extent aimed to capture all woody vegetation as at (nominally) August 2018 that has a 
crown cover of 10% and above (approximately 5-6% FPC) and a minimum patch size of 0.5ha. This includes 
woody vegetation in very sparse, sparse, mid-dense and dense classes (Table 1). Thereafter, all monitoring and 
mapping of changes to the woody extent (i.e. due to clearing and regrowth) are mapped for the same crown cover 
criteria but using a minimum patch size of 0.25ha. 

Table 1: Overview of structural (vegetation density) formations for woody vegetation as used in SLATS reporting. 
Adapted from Scarth et al., 2019. 

Foliage Projective Cover (FPC) or Crown Cover (CC) 

Very Sparse/Isolated 

<10% FPC 

0.25-20% CC 

Sparse 

10-30% FPC 

20-50% CC 

Mid-dense 

30-70% FPC 

50-80% CC 

Dense 

70-100% FPC 

>80% CC 

tall open woodland 

open woodland 

low open woodland 

tall open shrubland 

low open shrubland 

tall woodland 

woodland 

low woodland 

tall shrubland 

low shrubland 

tall open forest 

open forest 

low open forest 

open scrub 

open heath 

tall closed forest 

closed forest 

low closed forest 

closed scrub 

closed heath 

2.1.2 Out of scope 

The current scope of SLATS monitoring and reporting excludes some land cover, land cover change, and 
ecological attributes. This is due to a range of factors including the objectives for SLATS, the limitations of current 
scientific research to identify and accurately map some attributes state-wide, or because other programs in 
government are already mapping or documenting the attributes. Some of these may be addressed, where 
appropriate, in the future. Close ties with other states and the commonwealth government are maintained in order 
to minimise duplication and ensure complementarity and information sharing. 

Out of scope attributes are briefly outlined in the following subsections. 

2.1.2.1 Distinguishing native woody vegetation from non-native woody vegetation 

SLATS mostly monitors native woody vegetation change but due to the difficulty of separating native and non-
native woody vegetation using satellite imagery, especially woody weed species such as Prickly acacia (Valchellia 
nilotica), Parkinsonia (Parkinsonia aculeata) and Lantana (Lantana camara), reporting for some regions or 
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localised areas will likely include some non-native woody vegetation change.  

2.1.2.2 Non-woody vegetation change monitoring 

The extent, density or change in non-woody vegetation communities is not currently monitored. Refer to Ground 
Cover Monitoring for further information regarding how non-woody vegetation is monitored. Further information 
about non-woody regional ecosystems (e.g. grasslands) can be found in the Regional Ecosystem framework.  

2.1.2.3 Vegetation height 

Vegetation height is not considered, as it is not currently possible to reliably estimate height from optical satellite 
imagery such as Sentinel-2 or Landsat. DESI’s Remote sensing scientists are intending to research and investigate 
methods to estimate height from remote sensing data using radar, LiDAR and combinations of these sensors with 
optical imagery and field data. 

2.1.2.4 Vegetation composition 

This information is available in the Queensland Herbarium’s Regional Ecosystem mapping for Queensland. 

2.1.2.5 Vegetation densification (i.e. thickening) 

Vegetation densification, sometimes also referred to as thickening, is not currently monitored. This is an area of 

ongoing research. The current FPC product is intended to provide contextual attribution of the vegetation density to 

assist understanding of the structural attributes of the ecosystems which are being cleared or regrown. While larger 

increases in the FPC product over time for a particular location may reflect real densification processes on the 

ground, insufficient research and validation has been undertaken to reliably use it for tracking change in density as 

these changes are often quite subtle. It is worth noting that the process of encroachment—the colonisation of a 

previously non-woody area by woody vegetation—will be monitored as a change in woody vegetation extent as 

part of the regrowth monitoring, where the change can be reliably identified and mapped following SLATS mapping 

specifications. 

2.1.2.6 Fire 

Fire-affected areas are mapped separately to SLATS. Refer to Fire Scar Mapping for further information. Where 
SLATS can identify that fire was used as part of a human-induced clearing event, this is mapped. However, fire-
affected areas are generally assumed to be temporary, non-anthropogenic changes in woody vegetation, even if 
the ignition source was human induced. It is important to note that some estimates of vegetation age may be 
affected by historical fire events; regrowth age estimates may be influenced by fire and other natural disturbances 
which impact the canopy significantly, even if temporarily. If a fire or other natural disturbance such as cyclone 
damage, flood etc. causes the modelled woody probabilities to fall below a given threshold and this causes a break 
point, regrowth tracking is reset, and age would be determined from the ‘next’ period of regrowth/recovery detected 
after that point in time (depending on the other heuristic conditions—refer to Section 3.4.3 for further details). 

2.1.2.7 Land use and land use change 

Land use mapping it undertaken separately to SLATS. Refer to Land Use Mapping for further information. SLATS 
includes some information related to land use—the landcover replacement class (see Section 3.3.5.2)—but this is 
only intended to be indicative of the land use for which a clearing activity has been undertaken, or where regrowth 
is occurring. 

2.1.2.8 Other natural or non-human-induced change 

SLATS attributes natural or non-human-induced changes as part of the clearing mapping process where they are 
possible to identify and map but these changes are not included in any reporting. This includes change due to 
natural disaster impacts (e.g. cyclones, floods, droughts) and other natural tree death (e.g. senescence, dieback). 

2.1.2.9 Carbon sequestration or greenhouse gas emissions monitoring and reporting 

SLATS does not provide estimates for greenhouse gas emissions inventory purposes. The SLATS methodology 
and planned improvements such as age, height, and cover estimates, are intended to help inform carbon 
sequestration and greenhouse gas emissions reporting, where appropriate.  

2.1.3 Key definitions 

The following are key definitions as they apply in the context of the SLATS monitoring, reporting, and accounting 
framework. The definitions are based on what can be reliably identified and mapped consistently over large areas 
using (mostly) satellite imagery. For other terms and definitions used in this document, refer to the glossary on 
page iv.  

https://www.qld.gov.au/environment/land/management/mapping/statewide-monitoring/groundcover
https://www.qld.gov.au/environment/land/management/mapping/statewide-monitoring/groundcover
https://www.qld.gov.au/environment/plants-animals/plants/ecosystems
https://www.qld.gov.au/environment/land/management/mapping/statewide-monitoring/firescar
https://www.qld.gov.au/environment/land/management/mapping/statewide-monitoring/qlump
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2.1.3.1 Woody vegetation 

Assemblages of woody plants with greater than 10% crown cover. These may be trees, shrubs, or lianas, and are 
usually perennial. An assemblage may include uncleared native vegetation, regrowth following a previous clearing 
event (or events), plantations of native and/or exotic species, and woody weeds.  

2.1.3.2 Woody vegetation clearing activity 

The anthropogenic (i.e. human-induced) removal or destruction of woody vegetation. This may be ‘full clearing’ (i.e. 
a conversion from woody to non-woody), or ‘partial clearing’ (i.e. there has been some clearing activity for a given 
location, but it is not sufficient to render the area non-woody). Refer to Section 3.3 for details. 

2.1.3.3 Woody vegetation age since disturbance 

The estimated time since the woody vegetation was last significantly disturbed, or where possible to detect, the 
time since it started to grow or regrow following a disturbance. Estimates are based on time series modelling of 
woody vegetation and SLATS change history within the period 1988 to present. Refer to Section 3.4 for details. 

2.1.3.4 Woody vegetation regrowth (or regrowth) 

Woody vegetation that has regrown due to natural or human-induced processes and is determined to be sufficiently 
woody to be added to the woody extent data set (i.e. meets the criteria of having 10% crown cover and stand area 
of >0.25ha). Refer to Section 3.5 for details. As noted in Section 2.1.2.5, regrowth can include areas where 
encroachment has occurred. 

2.1.3.5 Woody vegetation density 

The estimated density of woody vegetation’s foliage cover based on a data product that estimates FPC and is 
derived from Sentinel-2 satellite imagery, calibrated by field estimates of FPC (refer to Section 3.6 for details). It is 
important to note that FPC is different to crown cover in that it considers only the area covered by foliage within a 
crown, whereas crown cover is the entire area of the crown. Crown cover is much more straightforward to visualise 
and map in manual mapping approaches. FPC considers the gap fraction in the canopy when viewed from above 
and requires field-based calibration data which estimates the gap fraction, and hence, foliage cover.  

2.2 Overview of the SLATS monitoring, accounting, and reporting 
framework 

Figure 1 is a schematic diagram of the key components and timeline which forms the basis of the SLATS 
monitoring, accounting, and reporting framework. The current framework is based on a conceptual model of 
establishing a detailed baseline account of the woody vegetation extent, age since disturbance and density for the 
state (as of 2018), and then monitoring and accounting changes to that extent due to clearing and regrowth, 
reporting annually. Estimates of woody vegetation age since disturbance and density are also updated annually to 
inform reporting. Section 3 provides details about the methods and workflows which support the framework. 
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Figure 1 Schematic example of the SLATS monitoring, accounting, and reporting framework 
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3 Methods 

3.1 Systems and data 

SLATS is supported by an extensive computing infrastructure and comprehensive archive of data. Data and 

programs (i.e. algorithms or code) used and produced are subject to quality control systems and standard 

operating procedures for image and field data processing, storage, and management. The systems and processes 

used are fully documented in a WIKI-based system and include peer-reviewed processes. All image processing 

follows internationally accepted and/or published standards. Data sourced from external parties are not 

incorporated into the workflow without appropriate metadata, including lineage statements. 

3.1.1 Systems 

All data processing is undertaken on the high-performance computing (HPC) facility at the Ecosciences Precinct, 
Brisbane. The HPC incorporates a multi-node Linux cluster, a mass storage on-line disk and near-line tape silo 
which houses the image archive and downstream products. The HPC is connected to the high-speed national 
science network portal (AARNet) enabling efficient downloading of large data sets, particularly Sentinel-2 data from 
the Copernicus Australasia Regional Data Hub.  

Much of the data processing for SLATS is now done "inside” containers that are run on the HPC cluster using 

Singularity software. A container is an executable application that packages all the system tools and libraries, code, 

dependencies, and configuration associated with a given application, allowing portable and reproducible workflows. 

Singularity containers are single immutable files, designed to run securely on multi-use HPC clusters, while 

allowing for future cloud-based computing. 

The SLATS codebase is written in Python, using open-source or in-house developed libraries. All code written for 

SLATS is maintained in Git version control repositories, hosted by Gitlab. The code is deployed as an installable 

python package (although currently only available inhouse) and installed in a container. SLATS uses the Gitlab 

Continuous Integration and Delivery (CI/CD) pipelines to automatically test, build, and deploy our code packages 

upon any updates to the code-base and dependencies. Changes to the code also trigger rebuilding, testing and 

deployment of an updated container. Both packages and containers are versioned to maintain complete separation 

between development and production and ensure reproducible workflows.  

Image metadata, field and other spatial data sets are stored in a PostgreSQL spatial database, which is integrated 

with the image archive and processing systems to enable efficient querying of /access to SLATS data sets. 

Imagery and other data sets are governed by a naming convention which is systematic, structured, and descriptive, 

and supports automated processing (Flood and Danaher, 2013). 

3.1.2 Satellite imagery and imagery pre-processing 

The primary satellite data used includes imagery from: Sentinel-2 missions; Landsat TM, ETM+ and OLI; and DMC-
3 TripleSat (Earth-i). 

3.1.2.1 Sentinel-2 imagery 

Sentinel-2 MSI imagery (10m/20m) from ESA’s Copernicus program is used as the primary image data for ongoing 

annual monitoring and reporting of woody vegetation clearing (Section 3.3), regrowth (Section 3.5), and density 

(Section 3.6). It is also used together with Earth-i and other very high-resolution data to inform woody extent 

refinement (Section 3.2).  

Level 1C Sentinel-2 image products are routinely downloaded from the Australasian Regional Copernicus Data 

Hub (http://www.copernicus.gov.au/) and then processed to surface reflectance as described in Flood (2013a). The 

imagery is geometrically corrected by ESA. Currently, ESA’s geometric correction process is fully operational with 

geolocation accuracy reported to be within one 10m pixel. However, in the early part of the time series (2016-2019) 

ESA’s quality tracking shows variable performance with long-term average location accuracy closer to 11m at 95% 

confidence (exceeding one 10m pixel; ESA, 2019). RSS therefore undertook an additional geometric co-

registration step of end-date image to start-date image for a small number of image pairs used in SLATS clearing 

detection. This was required to reduce misregistration effects in the clearing index. For processing of indices 

developed for Landsat such as FPC, fractional cover and the SLATS clearing index, the Sentinel-2 20m (Landsat-

analogous) short-wave infrared (SWIR) bands are resampled to 10m using cubic convolution. Processing of these 

indices is described in the relevant sections. Cloud and cloud shadow masks are computed using the methods of 

http://www.copernicus.gov.au/
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Zhu et al., (2015). Cloud and shadow masks are no longer used in the production of the SLATS clearing index as 

cloud-free image selection is almost always possible for Sentinel-2 imagery given the temporal frequency. RSS has 

complete holdings of Sentinel-2A and -2B imagery acquired over Queensland from late 2015 and ongoing. From 

2017 onwards this represents a five-day return interval. 

3.1.2.2 Landsat imagery 

The long time series of Landsat imagery (1988-ongoing) is used as the primary image data to derive temporal 

woody vegetation age since disturbance estimates (Section 3.4). It is also used extensively as an ancillary data set 

to provide historical context in SLATS change detection (Section 3.3) and woody extent refinement (Section 3.2), 

and to augment the shorter Sentinel-2 time series in regrowth detection (Section 3.5). 

RSS acquires Collection-2 Landsat-8 and -9 satellite imagery from the USGS, combined this represents an eight-

day return interval over all areas of Queensland. The Landsat imagery is accessed via a nightly automatic process 

that queries all new imagery using the USGS Machine-to-Machine (M2M) API tool (https://m2m.cr.usgs.gov/) and 

then downloads the data from their Amazon Web Services (AWS) object storage service (S3). Prior to this, 

Collection-1 Landsat data was downloaded directly from the USGS Earth Explorer site. RSS ceased downloads of 

Landsat-7 on 30 November 2021 as Landsat-9 data came fully online. Landsat-7 has the SLC-off issue and was 

considered redundant given availability of Landsat-8 and -9 in addition to Sentinel-2A and 2B data. Landsat 

imagery is geometrically corrected by the USGS. Analyses by the USGS suggest that the locational error is below 

a single pixel (Storey et al., 2014). SLATS uses the USGS geometric correction without modification. All Landsat 

data are processed to surface reflectance as described in Flood (2013a). Cloud and cloud shadow masks are 

computed using the Fmask methods of Zhu and Woodcock (2012). 

RSS holds the complete archive of historic USGS Landsat imagery from Landsat-5 TM, -7 ETM+ (up to 30 

November 2021), -8 OLI, and -9 OLI-2 acquired over Queensland during the period 1988 to present. 

3.1.2.3 Seasonal fractional cover composites 

Time series of seasonal composites of fractional cover (Scarth, 2008) are used for woody vegetation age since 

disturbance estimates (Section 3.4) and regrowth detection (Section 3.5). 

Three-monthly seasonal fractional cover composites are produced for Queensland for both Landsat (30m) and 

Sentinel-2 (10m) processing streams using the medoid method described in Flood (2013b). Prior to compositing, 

topographic shadow, cloud and cloud shadow masks are applied.  

3.1.2.4 Earth-i DMC-3 Imagery 

High-resolution (~80cm) satellite image mosaics of Queensland were purchased by the Queensland Government 

for the years 2016, 2017 and 2018. The 2017 and 2018 mosaics were the primary image data used in the 

development of the woody extent (Section 3.2). 

The data were purchased as three-band visible (blue, green, red) imagery, pan-sharpened from a nominal 

resolution of 3.2m to 80cm pixel size. The imagery was captured as many small tiles over a range of months, 

extending between April and November in each year, by the Disaster Management Constellation (DMC) program’s 

three DMC-3 TripleSat satellites. For each year, the imagery was pan-sharpened, colour-balanced and mosaicked 

by Earth-i, and finally supplied as 32 large mosaic tiles covering the whole of Queensland, with some overlap 

between tiles. Once on the RSS systems, the imagery was resampled into Albers Equal Area projection and a pixel 

size of 1m using cubic convolution resampling. The DMC satellites are pointable, allowing for view angles up to 30 

degrees off-nadir to avoid cloud contamination. This allowed for largely cloud-free image mosaics, however some 

small cloud and poor image quality effects, due in part to larger view angles, are evident in all the mosaics. 

3.1.2.5 Ancillary data 

A range of ancillary data are used to inform the SLATS operational mapping components. These data include: 

• high resolution satellite imagery and aerial photography available through online image services such as 
Planet (QSat), Google Earth, One Atlas Living Library, ESRI World Imagery, and the Queensland 
Government’s Queensland Globe 

• complementary remote sensing products, for example DESI’s Sentinel-2 fire scar data, and the Northern 
Australia Fire Information’s fire hotspots and fire scar maps (https://www.firenorth.org.au/nafi3/) 

• airborne lidar and terrestrial laser scanner data 

• regional ecosystem mapping. 

https://m2m.cr.usgs.gov/
https://www.firenorth.org.au/nafi3/
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3.1.3 Field data 

RSS hosts a national field database which incorporates a comprehensive collection of vegetation measurements 
collected across Queensland and nationally over a 20+ year period, encompassing much of the time that Landsat 
and Sentinel-2 satellites have been operating. Field data such as the star transect collection of vegetation cover 
measurements (Muir, 2011) are used to calibrate and validate remote sensing products. Field data including 
quantitative measurements, qualitative observations and extensive photos are stored in RSS’s PostgreSQL spatial 
database. 

3.2 Woody extent mapping 

3.2.1 Overview  

A woody extent data set was developed to inform clearing and regrowth mapping and to form the baseline for the 
woody vegetation change accounting framework of SLATS. The baseline woody extent data set and subsequent 
annual updates also serve as useful stand-alone data products for a range of other applications where detailed 
woody extent mapping is required. To develop the woody extent baseline, a data set showing the 
presence/absence of woody vegetation was derived from a Convolutional Neural Network (CNN) classification and 
the 2017 high resolution (re-sampled) Earth-i (1m) satellite imagery (Flood et al., 2019). This initial output then 
underwent extensive manual refinement to produce a detailed map of woody vegetation extent for Queensland. 
The 2017 woody extent was subsequently manually revised and updated, informed by SLATS clearing data for the 
2017-2018 monitoring period, and once available, the 2018 Earth-i image mosaic (refer Section 4.1.1.1). The 
resulting 2018 woody vegetation extent map established the baseline for ongoing monitoring, accounting, and 
reporting.  

At the end of each annual SLATS monitoring period the woody extent is updated using the clearing and regrowth 

mapping for that period (refer Section 4.1.1). 

3.2.2 Mapping specifications 

The scale of the baseline woody extent data set was intended to capture features visible at a nominal map scale of 
1:10,000: stands of woody vegetation greater than 0.5ha with a crown cover greater than 10% are represented. A 
minimum width of 20m was applied to linear features. The 10% crown cover was chosen to ensure sparser 
vegetation in the rangelands of Queensland was represented, and to enable extent boundaries to be defined 
consistently and accurately; delineating woody vegetation extent boundaries below this threshold can be 
ambiguous. Recognising that it is very challenging to estimate height in optical imagery, there is currently no height 
specification. 

3.2.3 Data 

The 2017 1m resolution Earth-I DMC-3 mosaic (Section 3.1.2.4) was used as the primary data source in the CNN 

woody classification and subsequent interpretation and manual refinement of the woody extent map.  

It has a spatial resolution that allows a higher level of detail than is routinely feasible with moderate resolution 

satellite imagery from Sentinel-2 and Landsat. This is particularly important for mapping regions of sparse, open 

vegetation. 

3.2.4 Automated classification 

Convolutional Neural Networks (CNN) are a subset of machine learning algorithms that exploit patterns, texture, 
and shapes in images, and have been shown to outperform traditional classifiers. In particular, the U-net CNN 
(Ronneberger, 2015) was chosen as it is less reliant on extensive training data than other CNN approaches and 
results in a per-pixel classification of the original data. The U-net is structured around stepwise filtering and 
degrading of imagery to different resolutions and then upscaling back to original resolution, allowing detection of 
structures and textures at different scales.  

3.2.4.1 Training data 

The U-net model was trained on many small patches of the source data, in this case the Earth-i imagery, each with 

a corresponding label image in which all pixels were labelled with the correct class: in this case, woody or non-

woody. A patch size of 128 x 128 pixels was used. The patch size had to be larger than the objects and textures to 

be detected. In this case, it needed to allow the sampling of whole groups of trees in sometimes sparse canopies, 

rather than single tree crowns. 
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As there was not an appropriate high-resolution woody/non-woody data set available, the required labels were 

derived from a set of 1km x 1km Earth-i image subsets, regularly sampled from a grid across each of the 32 mosaic 

tiles. After eliminating subsets with cloud or poor image quality and augmenting with targeted sampling in regions 

of under-represented, highly diverse land cover types, a set of 827 image subsets were used to develop the set of 

woody/non-woody labels. A simple threshold-based classification of the Earth-i green band coupled with a binary 

closing filter was used to produce an initial woody/non-woody classification for each image subset. These were 

then manually refined to produce the set of correct woody/non-woody labels. The required training patches of 128 x 

128 pixel were then extracted from each image-label pair in an overlapping grid and used in the model. 

In the development of the woody extent map training data, an operator interpretation of woody vegetation as 
captured in high resolution imagery was required. It is worth noting that in (very) high resolution imagery, a single 
tree crown can be captured by many pixels, conceptually different from representations of woody vegetation in 
moderate resolution satellite images from Sentinel-2 and Landsat, where a single pixel can be larger than a single 
tree crown.  

No attempt was made to map individual tree crowns, but rather contiguous regions of woody vegetation cover 
which include tree/large shrub crowns, shadows, and the gaps between crowns, at a wide range of densities, 
broadly consistent with existing coarser scale mapping of regional ecosystems (Flood, et al., 2019). These textures 
are the primary visual indicators of woody cover, at a range of densities. Biophysical quantities such as height were 
implicit in the human operator’s view of the imagery, but are not always easily quantifiable from optical imagery, 
even with a pixel size of 1m. 

3.2.4.2 Model performance 

The model's ability to predict woody/non-woody pixels was assessed as approximately 90% accurate using Monte 
Carlo Cross Validation (MCCV), and with consistent performance across most of Queensland (no spatial bias). The 
MCCV involved 50 repetitions of the model fit, where in each iteration 70% of the training data subsets were used 
to fit the model and 30% withheld for validation. This meant that in any model run, subsets which were held out 
were independent of the model. This gave a robust measure of accuracy from a number of accuracy assessments, 
each one conducted on an independent data set.  

3.2.4.3 Woody classification 

All training data were used to produce the final model, and the model then used to produce a 2017 woody 
classification for Queensland from the 1m resolution Earth-i mosaic tiles. 

3.2.4.4 Downscaling for manual refinement 

The 1m resolution classification was downscaled to 10m to better match the intended mapping scale, suitable for 
integration with Sentinel-2-based monitoring and to facilitate practical manual editing. In the downscaling, a 10m 
pixel was labelled as woody if >= 10% of intersecting 1m pixels were labelled woody. A 10m binary closing filter 
was applied to connect small fragments that formed part of a larger area/ecosystem (or stand) of classified woody 
areas, and also to reduce the detail to manageable levels for editing, and to counter the errors associated with 
inconsistent mapping of individual crowns and the effects of crown shading and illumination in the 1m data. As a 
final step, small clumps of woody vegetation and gaps (non-woody clumps) were filtered to implement the minimum 
mapping unit of 0.5ha. 

3.2.5 Manual editing and refinement 

3.2.5.1 Decision rules 

Features were categorised as either woody or non-woody based on a set of decision rules informed by visual 
inspection of the data, the requirements of existing data sets/programs, and expert knowledge. These decisions 
were based on considerations for SLATS and Spatial BioCondition and other vegetation monitoring applications, as 
well as the ecological characteristics of the vegetation. No distinction was made between native and non-native 
vegetation—woody vegetation such as woody weeds and horticultural crops are included as woody in the final 
classification. 

3.2.5.2 Manual editing 

The data set was manually refined using a vector-editing approach in ArcGIS Pro software. A PostgreSQL 
distributed geodatabase was utilised to version data and enable reconciliation of edited data to a master data set. 
Each scientist undertaking the editing was assigned a unique connection file to access the data set. Tiles 
comprised of a 25 x 25km systematic grid were used to sub-divide and manage the data set and to track mapping 
progress. 

Each scientist was allocated an area to assess (subset by Queensland’s bioregions) allowing for defined regions 
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for editing so that specific experience and knowledge was developed of the features and vegetation types for the 
respective bioregion. Each scientist worked across a number of different bioregions over the course of the project. . 
Mapping polygons were visually checked against available satellite imagery (Earth-i 2017, Sentinel-2) at an on-
screen scale of ~1:10,000. Misclassification or spatial (i.e. boundary) errors were edited using the suite of editing 
tools within the software package. These errors were generally caused by misclassification in the U-net modelling 
and could be due to factors attributable to the imagery (i.e. cloud, geometric/radiometric distortion, quality of 
imagery/colour balancing), or low accuracy in the modelling prediction. Where there was ambiguity in the 
classification of a feature, ancillary data was utilised to aid interpretation. Generally, ancillary data was limited to 
regional ecosystem data (Queensland Herbarium 2019), land use data (QLUMP 2019), and previous SLATS 
clearing data. Expert opinion from senior botanists at the Queensland Herbarium was sought for specific areas of 
uncertainty or for specific vegetation types.  

3.2.5.3 Mapping peer review and quality assurance (QA) 

An in-house peer review process was established for the initial few months of the project to encourage discussion 
and achieve greater consistency between the scientists in implementing decision rules. Scientists checked the 
editing of colleagues and provided feedback as comments in a point-based data set. Areas of disagreement or 
confusion were discussed across the wider team and decisions documented.  

Additional to the initial peer review, a QA process was conducted by senior scientists throughout the entire editing 
phase to ensure accuracy and consistency. The QA process allowed senior scientists to review all mapping with 
the goal of identifying and editing any obvious errors and providing feedback to editors in a timely manner. The 
process involved a systematic visual inspection of the edited outputs, similar to the original editing workflow but 
with a focus on final corrections and identification of woody vegetation, under- or over-representation of woody 
areas, with specific regard to the mapping specifications. 

3.2.5.4 Refinement through re-modelling 

Certain features (i.e. urban, sparse vegetation, regrowth, mangroves) were not consistently predicted in the original 
CNN modelling resulting in excessive manual editing. Urban areas were particularly poorly classified and 
significantly over-estimated woody vegetation presence, likely due to shadowing effects and spectral/textural 
confusion from buildings and other infrastructure interspersed with woody vegetation, and also likely due to under-
representation of urban areas in the training data set. Additionally, the generalised filtering processes used to 
degrade from 1m to 10m for manual refinement did not always adequately represent highly detailed land use/cover 
types as urban. For these areas, an iterative modelling approach was trialled using the U-net architecture (as 
described in Section 3.2.4) to create a more accurate baseline for further checking/editing. The trial was conducted 
using data from edited mapping in the Cairns urban region where the overestimated woody vegetation in urban 
areas had been removed by manual editing. This was then used to re-train a U-net model and predict woody 
vegetation in urban areas in Southeast Queensland. On visual inspection, outputs from the remodelled predictions 
in urban areas were more accurate and required significantly less manual editing. Based on this result, further 
urban regions across Queensland were re-modelled and used as the new baseline for further editing.  

Re-modelling was also expanded to other areas where the original model predictions of woody vegetation were 
determined to be poor or inconsistent following visual inspection. These areas included: low woody regrowth in the 
Brigalow Belt; sparse patchy vegetation in the Mulga Lands; and mangroves and wetlands in Cape York and the 
Gulf Plains. Once available, the Earth-i 2018 imagery allowed for further remodelling for areas that were cloud-
affected in the 2017 baseline. Training data for these re-modelling exercises was derived from the edited woody 
extent mapping within the same region as the area being re-modelled. Care was taken to ensure no vegetation 
change had occurred to ensure consistency in the map currency. All re-modelled areas were then subject to the 
same editing and review process described in Sections 3.2.5.2 and 3.2.5.3. 

3.2.5.5 Field work 

An extensive field program was undertaken to provide SLATS scientists with the opportunity to calibrate their 
desktop image interpretation with on-ground observations. Largely qualitative observation, the field work facilitated 
a greater understanding of the vegetation types within and between bioregions, improving consistency within the 
team in applying decision rules at the desktop. Field work also allowed for checking and refinement of the mapping. 
Areas of uncertainty or ambiguity in the mapping were accessed by vehicle where possible and observations of 
vegetation type, age, and condition were recorded, and field photographs were captured at the location if required. 
Further observations were captured opportunistically at points-of-interest en route. At the conclusion of each field 
trip, observations and photographs were compiled into a central database and used to further refine the mapping, 
where required. 

3.2.5.6 Updating from 2017 to 2018 baseline 

On completion of the 2017 woody extent map, it was subsequently updated to create the 2018 woody extent 
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baseline using the SLATS clearing data for the 2017-18 monitoring period (detailed in Section 4.1.1.1) and filtered 
to maintain the 0.5ha minimum mapping specification (refer Section 4.1.1.2).  

3.2.5.7 Successive annual updates 

The woody extent is updated annually at the end of each SLATS monitoring period using the completed clearing 
(from 2018-19 onwards) and regrowth (from 2019-20 onwards) mapping for that period. The procedures for 
successive updating of the woody extent are detailed in Section 4.1.1.  

3.2.6 Data products 

The woody extent baseline and subsequent annual updates (refer to Section 4.1.1) are stored in one single vector 
data set, with attributes stored in a geodatabase that enable production of a woody extent for a given year, or data 
about woody vegetation extent change between years. The woody extent for 2018 (the baseline year) and 
subsequent woody extent updates for each annual monitoring period are published as open data.  

3.3 Woody vegetation clearing mapping 

3.3.1 Overview 

Historically, and ongoing, a state-wide clearing data set is required to inform policy evaluation for the VMA, as well 
as to service a range of land management and biodiversity conservation requirements across government. It is also 
a fundamental component of the woody vegetation account, documenting the woody extent loss, and cleared areas 
are also monitored for regrowth in subsequent monitoring periods. Woody vegetation clearing is defined as the 
removal or destruction of woody vegetation by human-induced (i.e. anthropogenic) means.  

For over twenty years, and up until the 2017-18 monitoring period, the location and extent of woody vegetation 
clearing across the state of Queensland using Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper 
(ETM+) imagery has been mapped. The ability to detect woody vegetation change due to clearing, particularly in 
Queensland’s sparser woodlands, is ultimately limited by the 30m spatial resolution of the Landsat imagery. The 
previous Landsat-based clearing mapping method detected woody vegetation change between two dry season 
Landsat images approximately twelve months apart. The mapping process involved two stages: (i) the automated 
generation of a woody vegetation clearing index that characterises reflectance differences between the two image 
dates and highlights possible clearing of woody vegetation as a probability measure (Scarth et al.,2008); and (ii) 
extensive visual interpretation, manual refinement and quality assurance checking of the possible clearing 
detections to produce a final, high quality, clearing data set.  

In the current methodology SLATS has transitioned from the Landsat approach to use Sentinel-2 satellite imagery 
at a spatial resolution of 10m to improve the detection and mapping of woody vegetation clearing. 

In general the Landsat two-date method still applies to the Sentinel-2 based approach for clearing mapping. 
However, there has been some necessary adaptation and modification of both the clearing index (detailed in 
Section 3.3.4) and the manual refinement approach (detailed in Section 3.3.5). This has been necessitated by 
sensor and capture differences between Landsat and Sentinel-2 data (resolution, radiometric characteristics, and 
length of time series), and particularly due to the explicit incorporation of the woody vegetation extent data in the 
mapping process. 

3.3.2 Mapping specifications 

The Landsat woody vegetation clearing index has been adapted to apply to Sentinel-2 10m data and the manual 
refinement and quality checking is all undertaken at a scale suited to Sentinel-2’s 10m spatial resolution.  

The minimum clearing size delineated is 0.25ha. As noted in Section 2.1.1 the 2018 baseline woody extent aimed 
to capture all woody vegetation as at (nominally) August 2018 that has a crown cover of 10% and above 
(approximately 5-6% FPC) and a minimum patch size of 0.5ha. This includes woody vegetation in very sparse, 
sparse, mid-dense and dense classes (Table 1). Thereafter, all monitoring and mapping of changes to the woody 
extent (i.e. due to clearing and regrowth) are mapped for the same crown cover criteria but using a smaller 
minimum patch size of 0.25ha. 

These specifications are a compromise between requirements for the maintenance and updating of the woody 
extent data, deriving the benefits of the higher spatial resolution of Sentinel-2 data, and providing clearing data at a 
suitable level of detail to address a range of user requirements while maintaining consistency and efficiency for the 
annual program.  
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3.3.3 Data 

3.3.3.1 Sentinel-2 imagery 

The current clearing detection methods use Sentinel-2 imagery corrected to surface reflectance (Section 3.1.2.1). 
There are 245 Sentinel-2 tiles covering the state of Queensland. As in the Landsat monitoring approach, for each 
tile, a pair of Sentinel-2 surface reflectance images is used to represent the start and end dates of the 12-month 
monitoring period. The Sentinel-2 end date for the previous monitoring period becomes the start date for the next 
monitoring period, and so on. At the start of each monitoring period, the set of end date images covering 
Queensland are manually selected to be as close as possible to a nominal dry season date of 15 August giving 
preference to minimal cloud cover, smoke, haze, and greenness. Dry season imagery (July-September or late 
winter to early spring) generally shows the greatest contrast between woody vegetation and grass, where woody 
vegetation generally persists with some vigour and the grass/herbaceous layer tends to dry and wither, particularly 
in the rangeland and savanna environments, but also in the more temperate and near-coastal environments. If 
image dates are selected any later, woody vegetation may also have dried and/or there is some risk of early wet 
season rains leading to greening up of the landscape, both of which can reduce the contrast between woody and 
non-woody vegetation, including in areas that may have been cleared in the past year. Reasons for nominating the 
15 August date are further outlined in Section 4.2.1.5.  

Approximately 60 of the 245 Sentinel-2 tiles in any annual image selection are a composite of two dates to achieve 

complete coverage of the tile due to the satellite flight path schedule. When compositing is required, image dates 

are selected to be as close as possible (typically a few days apart), whilst minimising cloud and misregistration 

effects in the composite. A separate spatial raster is created to record the source date of each pixel in the 

composite, enabling the start and end dates of the monitoring period to be tracked at the pixel level. All SLATS 

dates are stored in a database for ease of calling from in-house scripts and general SQL queries. 

3.3.3.2 Woody vegetation clearing index training data 

The original Landsat woody vegetation clearing index was developed using training data derived from historic 

finalised SLATS clearing data mapped over numerous monitoring periods covering 2000-01 to 2010-11 (Scarth, 

Gillingham, and Muir, 2008). The original Landsat model was in part reliant on a long time series component, not 

applicable to the short Sentinel-2 time series. Nor was a large set of finalised Sentinel-2 clearing data available to 

train a new model directly on Sentinel-2 imagery.  

Leveraging from work undertaken by NSW SLATS to adapt the original Landsat clearing index to SPOT imagery 

(Flood et al. 2020), a new form of the model (Equation 1c in Flood et al. 2020) was fitted on the original Landsat 

historic clearing training data set. The resulting index was then adapted to Sentinel-2 imagery using the radiometric 

relationships described in Flood (2017) to transform Sentinel-2 reflectance values to Landsat equivalents. This is 

possible given that the spectral bands are similar to those available from the Landsat sensor (Table 2).  
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Table 2: Resolution and spectral window for each of the corresponding bands for each sensor 

  Sentinel-2 MSI Landsat 8 OLI 

Generic band 

name 

Pixel 

resolution 

(m) 

Band 

number 

Spectral 

wavelength (µm) 

Pixel 

resolution 

(m) 

Band 

number 

Spectral 

wavelength 

(µm) 

Green 10 3 543-578 30 2 530-590 

Red 10 4 650-680 30 3 640-670 

Near Infra-Red 

(NIR) 

10 8 785-900 30 4 850-880 

Short Wave Infra-

Red 1 (SWIR 1) 

20 11 1565-1655 30 5 1570-1650 

Short Wave Infra-

Red 2 (SWIR 2) 

20 12 2100-2280 30 7 2110-2290 

3.3.4 Automated clearing detection 

The modelled woody vegetation clearing index generates values ranging between 0 and 1000 where 0 indicates no 

clearing and 1000 indicates a very high probability of clearing. In Scarth et al. (2008), Receiver-Operator Curve 

analysis of the Landsat clearing index was used to select six distinct thresholds resulting in a clearing classification 

based broadly on the likelihood of clearing whilst balancing omission and commission errors. A similar set of 

thresholds was applied to the Sentinel-2 based woody vegetation clearing index resulting in a set of six classes 

approximating varying likelihood of clearing from low through to very high. These classes are then used to inform 

mapping decisions by scientists in the manual refinement stage.  

The woody extent for the start year in the monitoring period is used to identify any non-woody pixels in the clearing 

probability classes. For example, for 2018-19, this is the 2018 baseline woody extent, for 2019-20 it would be the 

2019 woody extent, and so on. Ideally, pixels which are non-woody to start with would be eliminated from further 

scrutiny and the manual editing stage would only need to consider the woody areas for clearing assessment. 

Generally, the woody areas are still a focus of the mapping, however, at least in the early stages of the current 

methodology, an additional set of classes is used to identify potential clearing outside of the woody extent t. The 

woody and non-woody probability clearing classes are labelled with a set of codes listed in Table 3. 

The woody vegetation clearing index and change classification rasters are automatically generated for each of the 

245 image pairs of start and end dates covering Queensland for the monitoring period.  

Table 3: Clearing index thresholds in the change classification layer for woody and non-woody areas delineating 
classes ranging from low to increasing probability of clearing. 

Clearing index threshold >420 370-420 320-370 270-320 220-270 170-220 

Woody change classification 

codes 
39 38 37 36 35 34 

Non woody change 

classification codes 
69 68 67 66 65 64 

3.3.5 Clearing mapping 

3.3.5.1 Mapping clearing using Sentinel-2 vs Landsat 

Transitioning the woody vegetation clearing monitoring from medium resolution Landsat imagery with 30m pixels to 
high resolution Sentinel-2 imagery with 10m pixels involved a significant change in the scale of the monitoring. This 
in turn necessitated a change in clearing mapping. The medium resolution Landsat data was able to be used as a 
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woody classifier (either modelled via, for example Foliage Projective Cover models, or by manual interpretation) 
since a single Landsat pixel tended to be larger than an individual shrub or tree crown. Each pixel captures both 
the crown and inter-crown gap of an area of woody vegetation. As resolution increases, this model starts to break 
down, since each pixel becomes a progressively purer representation of crown or non-crown (Zhang et. al. 2019). 
At higher and higher resolutions, a woody area then consists of both woody and non-woody pixels, particularly in 
ecosystems which are naturally more open. Given the scale change, an unbiased estimate of the area cleared 
changes from counting woody change pixels, to delineating the pixels which comprise the area or stand of woody 
vegetation which includes the crown and inter-crown (i.e. gaps between crowns) impacted by the clearing event. 
This area is referenced throughout this document as a “clearing footprint”. This is more representative of the total 
area impacted by the clearing event and is more independent of the resolution of the sensor. 

3.3.5.2 Attribution including ‘landcover replacement classes’ 

During the manual editing stage, each area of woody vegetation clearing is attributed with a landcover replacement 

class (Table 4). This provides an indication only of the land cover/land use purpose for which the vegetation was 

cleared or modified. Assignment of these classes is primarily based on visual interpretation, with reference to 

ancillary data sources. In areas where there are many different forms of land use, it can be difficult to interpret the 

final landcover replacement class and therefore this classification is indicative only. For example, land assigned to 

the class pasture may later be converted to settlement or other classes. Landcover replacement classes used in 

the Sentinel-2 change monitoring have been adapted from the Landsat-based clearing monitoring. 

Table 4: SLATS replacement landcover 

Replacement 
land cover 

Description  

Pasture Grazing and other general agricultural land management practices—this class includes clearing for 
pasture, internal property tracks, fence lines or fire breaks.  

Crop Cropping or horticultural purposes. 

Forestry Timber harvesting in state or privately owned native or exotic (e.g. pine) forests or plantations. 

Mine Mining activities (including coal seam gas infrastructure). 

Infrastructure Utilities such as roads, railways, water storage, pipelines, powerlines etc. 

Settlement Urban development. 

 

Additional attribution discriminates the type of clearing activity in terms of how much modification of the vegetation 

has occurred. This serves two purposes: (i) areas which are partially modified are able to be reported as such, thus 

providing a more nuanced component to the reporting of the clearing areas – this is particularly relevant for those 

regions where partial clearing is routinely undertaken under VMA codes or in unregulated areas for routine 

agricultural land management (e.g. fodder clearing and harvesting in the Mulga Lands); and (ii) it enables updating 

of the woody extent after each monitoring period such that partially cleared areas remain in the woody extent and 

are therefore considered in future monitoring.  

Three classes are used to represent the degree of modification:  

i. Full clearing refers to clearing areas where the clearing activity has resulted in conversion from woody 

(i.e. greater than 10% crown cover) to non-woody (i.e. less than 10% crown cover). Full clearing will 

result in removal from the woody vegetation extent data set.  

ii. Partial clearing (major) refers to clearing areas where greater than 50% of the patch area has been 

removed and greater than 10% crown cover remains. These areas remain in the woody extent. 

iii. Partial clearing (minor) refers to where less than 50% of the clearing patch has been removed and 

greater than 10% crown cover remains. These areas remain in the woody extent. 

The three classes are all reported as clearing activity but distinguished in SLATS reporting. The full list of pixel 
attribution codes used during manual mapping of vegetation clearing is detailed in Table 5 together with how each 
informs the reporting of clearing and woody extent updating. 
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Table 5: Codes used in mapping and attribution of vegetation clearing, including landcover replacement 
class, partial and full clearing attribution, and how each code informs reporting and updating of the woody 
extent. 

 

 

Code  Description Examples Reported 

as 

Clearing 

Remain as 

Woody 

Vegetation 

Human-

induced 

clearing 

activity 

40 Possible clearing For review No Yes 

41 Full clearing to pasture: where vegetation 

has been converted from woody (i.e. 

>10% crown cover) to non-woody (i.e. 

<10% crown cover)  

All clearing to pasture, internal property 

roads and tracks, fence lines, fire 

breaks. Single house pads in rural and 

semi-rural areas, golf courses 

Yes No 

71 Partial clearing major to pasture: where 

>=50% area of vegetation removed 

within patch and >10% crown cover 

remains 

Clearing to pasture and still woody. 

Poisoning where dead trees left 

standing. 

Yes Yes 

73 Partial clearing major to forestry: where 

>= 50% area of vegetation removed 

within patch and >10% crown cover 

remains 

Clearing to forestry and still woody. 

Forestry includes timber harvesting on 

state- or privately-owned lands, where it 

can be verified. 

Yes Yes 

75 Partial clearing minor: where <50% area 

of vegetation removed and >10% crown 

cover remains 

Disturbance including removal of 

understorey. 

Yes Yes 

42 Full clearing to crop Within or adjoining existing cropping 

area where paddock has been ploughed 

for planting orchard/crops. Clearing of 

woody orchards (including grape vines) 

for horticultural purposes. 

Yes No 

46 Full clearing to settlement Clearing for housing estates, shops, 

hospitals etc. 

Yes No 

48 Full clearing to mine Mining activities including expansion of 

open cut mining, CSG pads, coal 

exploration areas and large quarries 

Yes No 

51 Full clearing to infrastructure Dedicated roads, gas pipelines, rail & 

easements, airport runways and gravel 

pits beside roads. Dams and 

aquaculture ponds. Permanent linear 

features cleared between CSG pads. 

Yes No 

53 Full clearing to forestry Clearing within State forests or exotic 

and native plantations.  

Yes No 

58 Adjustment: adjustment to the woody 

extent due to missed clearing 

Correction for missed clearing in 

previous monitoring period. 

No† No 

59 Adjustment: adjustment to woody extent 

due to previous incorrect mapping 

Correction to remove vegetation due to 

incorrect mapping.  

No† No 

80 Intermediate code: designates strip 

clearing. These are re-evaluated during 

post-processing and assigned either 41, 

71 or 75).  

Refer to Section 3.3.5.4 for details. 

Strip clearing and fodder harvesting but 

only in the Mulga lands. 

Yes Depends on 

final 

attribution.  
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Non-
human 
induced 
change 

54 Non-human induced change. Used to 

map natural change events that result in 

semi-permanent or permanent 

loss/alteration of the woody vegetation.  

Note: Change due to bushfires is not 

considered a semi-permanent or 

permanent loss/alteration. 

Landslips, extensive cyclone damage, 

drought death, dieback, flood damage 

No Depends on 

extent of 

damage 

**Evaluated and attributed on case-by-case basis 

†Reported as adjustment to woody extent, but not included in clearing areas. 

3.3.5.3 Manual mapping methods 

The manual mapping stage is critically important to production of the final high-quality woody vegetation clearing 

maps. The need for extensive manual editing is required because naturally occurring events can affect vegetation 

in ways that appear similar to woody vegetation clearing in the imagery and clearing index. For example, damage 

by storms, fire and drought can all cause a reduction in canopy health or cover that can influence the woody 

vegetation clearing index in a similar way to a clearing event. In addition, seasonal effects, atmospheric conditions, 

and other factors can affect how reflectance from land cover types, especially vegetation, appears from one 

satellite image date to the next. Image corrections attempt to account for this as best as possible, but effects 

remain that can mean that image differencing detects changes which are undesirable. Hence, no matter how good 

an algorithm is, there is still no approach that can provide the level of discrimination and accuracy that a trained 

scientist can achieve. 

The manual mapping stage is conducted in two passes: initial editing to identify and delineate vegetation clearing 
using the automatically generated clearing classifications, followed by extensive review and quality assessment. 
For each mapping pass, automated processes (python scripts) recall the required image inputs to the analyst’s 
local working directory. For a given Sentinel-2 tile this includes: the selected Sentinel-2 start and end date imagery, 
the automatically generated change classification and clearing index, and historical clearing data along with any 
ancillary data or imagery used to aid interpretation. Editing/quality review is undertaken directly on the woody 
extent data. Attribute domains are utilised to enable fast and efficient attribution of clearing codes to a specified 
woody extent polygon where clearing has been detected and helps to minimise attribute errors by the operator. The 
woody vegetation clearing index (Section 3.3.4) provides a useful starting point for the change classification, 
helping to focus the manual mapping effort on those areas where clearing is most likely to have occurred. SLATS 
scientists modify and/or attribute the woody extent polygons depending on the area that is interpreted as being 
affected by clearing. In some cases this means the linework for a woody extent polygon needs to be modified and 
attributed if it is only partly affected by either full or partial clearing. In other cases where the entire polygon is 
affected, the linework is not modified, only the attributes.  

The first pass involves a scientist reviewing the change classification layer and associated Sentinel-2 imagery to 
identify and map the full extent of a clearing event (clearing footprint) in accordance with the codes in Table 5 and 
the Sentinel-2 mapping guidelines. Scientists draw upon their own expert landscape knowledge and that of others 
in the SLATS team to aid decision making. Sometimes the pre-defined probability thresholds on the clearing index 
do not identify the full clearing footprint. In this case, manual delineation of the vegetation change through image 
interpretation is required.  

The second pass of the manual editing is undertaken by a senior DESI remote sensing scientist to provide an 

independent check. It involves quality checks to validate clearing has occurred where it has been mapped in the 

first pass, modify the clearing footprint if required, and check for missed areas of clearing. Discrepancies are 

highlighted for further review and discussion where required. The mapping team regularly discuss issues, areas of 

interest and mapping specifications to ensure consistency and continuous improvement. During this second pass, 

the senior scientist may make judicious use of other high-resolution imagery sources to confirm difficult to interpret 

areas such as occurs where the vegetation is sparse, or the clearing activity is difficult to distinguish. The scientists 

make the required updates, and a script is run to save the final data set to the HPC archive.  

This two-pass process ensures a high level of accuracy and consistency in the final map. Note that some western 

tiles, where there is historically very little or no clearing activity, are only subject to the first pass. Any areas in these 

regions that are uncertain during this single pass are discussed with senior scientists to maintain consistency. 

After each mapping pass, the edited data is versioned and archived and each editing stage is automatically logged 

in a spatial database table together with operator name and time stamps. All procedures are documented on the 

RSS Wiki. 
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All manual editing is supported by a set of documented mapping guidelines, which guides scientists in determining 

the full extent of the clearing footprint. This is a ‘living’ document, updated as procedures are refined, or decisions 

clarified. The manual editing work is done using ESRI’s ArcGIS Pro software which includes a suite of tools for 

viewing and enhancing imagery. The software allows editors to edit or modify polygons and to assign attributes 

using the codes given in Table 5. In any mapping period, change mapping is clipped into a Master version of the 

woody extent. A new attribution field is added to the data’s attribute table (database) which enables vegetation 

changes in any particular area to be tracked through time without losing changes to linework. Where required to 

produce a dataset for any particular release date, the attributes are used to merge or dissolve linework to produce 

a final map reflecting the changes made in the given mapping period (refer to Section 4.1.1.2 for further details).  

3.3.5.4 Post-processing strip clearing mapping for the Mulga Lands bioregion (code 80) 

Strip clearing and other fodder harvesting methods can result in complex clearing patterns which are difficult to 
map. This type of clearing activity is particularly prevalent in the Mulga Lands bioregion where fodder harvesting 
practices are common and some provisions in the VMA allow for this type of clearing to ensure stock can be fed 
during drought. Clearing patterns in this bioregion can include obvious strips which may exceed the specifications 
for linear features (i.e. 20m width) or complex criss-crossing patterns or narrow strips which are below the 
specifications for linear features. The SLATS change algorithm, while accurate at detecting strip clearing events, 
does not always provide enough detail to accurately delineate these various types of strip clearing without 
significant additional manual updating. Therefore, to ensure objectivity and repeatability, as well as accurate 
delineation of strip clearing in the Mulga Lands bioregion, a post hoc mapping process was developed.  

During the first pass SLATS clearing mapping, strip clearing events that are not well-defined in the clearing index, 
or are difficult to efficiently map to SLATS specifications, are mapped by delineating the outer boundary of the 
clearing event and attributing the area as code 80 (an intermediate code). A post hoc process then applies an 
image segmentation model, trained by accurate mapping of woody vegetation in the local region, to provide an 
improved delineation of the cleared strips. This is then manually reviewed and refined as required to provide an 
accurate delineation of the clearing. The clearing is then attributed accordingly as either full or partial (major) 
clearing and coded accordingly (i.e. codes 41 and 71 respectively; Table 5). 

3.3.5.5 Post-processing the clearing mapping 

In what is effectively a third, and final, mapping stage, a post-processing step is undertaken by senior DESI remote 
sensing scientists to moderate the clearing mapping across tiles. This involves some targeted, and some random, 
selection of tiles and moderating the clearing for accuracy and consistency. It also helps to ensure the tiles from 
western areas of the state which have only been subject to the first pass of editing, do get some review and 
consistency checks applied to them. During this step, changes are made as required based on expert opinion. 

 An additional manual refinement exercise is undertaken to edge match the mapping in overlapping regions 
between adjacent tiles to ensure a seamless data set for the state.  

Prior to integration into the woody extent master database, the clearing polygons are intersected with a forestry 

vector data set to ensure that clearing events that fall within regions where there are known forestry plantations are 

correctly attributed as Clearing to forestry. The forestry vector is derived from the union of Agricultural land audit - 

current forestry plantations – Queensland (Department of Agriculture and Fisheries) and Queensland Digital 

Cadastral Database (Department of Resources), where base tenure is state forest, forest reserve or timber 

reserve. These data sets are downloaded from the Queensland Government Spatial Catalogue for the date closest 

to the start of the given monitoring period. 

The clearing polygons are then integrated into the woody extent geodatabase following the procedures of Section 
4.1.1.2, as part of the annual woody extent updating. 

3.3.6 Data products 

The final state-wide clearing data set is stored in vector form and released as vector for public access via Open 
Data portals. It is also converted to raster for use in the reporting framework. 

3.4 Woody vegetation age since last disturbance estimation 

3.4.1 Overview 

The initial aim was to estimate the age of woody vegetation in the 2018 baseline year, to then enable tracking of 
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vegetation age over time in successive annual updates to the woody extent (refer Section 4.1.1) to provide 
environmental and contextual data that makes the woody extent, clearing and regrowth mapping more useful for a 
range of policy and land management purposes.  

This research has resulted in a new approach to modelling land cover over long periods using a sampling 
framework that requires minimal temporal coverage. The method combines Landsat time series, the high-resolution 
woody extent, and a sequential classifier to estimate the likelihood of woody cover for each year over the length of 
the Landsat time series (30+ years).  

Due to the limits of the time series-based age estimation, woody vegetation age is defined as:  

The estimated time since the woody vegetation was last significantly disturbed, or where possible to detect, 
the time since it started to grow or regrow following a significant disturbance. A disturbance may be due to 
a clearing event or other disturbance such as fire, flood, drought-related tree death etc.  

For a given Landsat pixel, the sequential classifier generates a 30+ year time series of woody probabilities. 
Heuristic rules are then used to detect patterns in the woody probability sequence that might characterise a typical 
persistent woody vegetation growth (or regrowth) response curve and track that behaviour over time. The 
estimated age from the probability sequence is combined with the SLATS Landsat clearing record to provide a 
preliminary estimation of age since last disturbance for all woody pixels recorded in the 2018 baseline woody 
extent and to track the age in subsequent woody extent updates, including assigning age estimates to any new 
regrowth that is mapped. 

3.4.2 Data 

A thirty-three-year time series (1988 to 2021) of seasonal Landsat fractional cover components at 30m spatial 
resolution (Scarth et al., 2008) was used to estimate the age since disturbance of all woody pixels in the 2018 
baseline woody extent and the 2019 through to 2021 (inclusive) annually updated woody extent rasters. From 2022 
onwards, an extended time series of seasonal Landsat fractional cover (adding in all recently processed seasonal 
fractional cover up until the most recent Spring season) is processed to assign an age estimation to newly mapped 
regrowth in that monitoring period, and to any pixels where an age was unable to be estimated previously. The 
fractional cover data consist of bare, green, and non-green sub-pixel components. Seasonal data were generated 
by calculating the medoid (Flood, 2013) for every three-month period (i.e. calendar season). Thus, there were 15 
fractional cover components for every 12-month period (covering five seasons, Spring to Spring inclusive). 

The 2019 woody extent data set was used as sample strata to generate woody/non-woody training sequences for a 
Conditional Random Field classifier (described below in Section 3.4.3.1). The 2019 woody extent data were 
resampled from 10m to 30m spatial resolution to align spatially with the Landsat time series.  

The historical SLATS Landsat (1988-2018) and Sentinel-2 (2018-ongoing) clearing data sets are additional inputs 

used to constrain the age since disturbance estimates for each monitoring period.  

3.4.3 Methods 

3.4.3.1 Conditional Random Fields 

Conditional Random Fields (CRFs) are a discriminative supervised classifier designed for sequential data (Lafferty 
et al., 2001). CRFs are commonly used in the field of Natural Language Processing (NLP), which uses machine 
learning to understand sequential context in human languages. In the NLP field, a sequence might be represented 
by a sentence, and each word would consist of a set of predictive features. The goal of CRFs is to estimate the 
likelihood of transitioning between states (i.e. from one word to another). In this work, we used CRFs in a similar 
manner but applied to remotely sensed data. Therefore, our sequence for an individual pixel was a time series of 
seasonal fractional cover estimates. The sequence states were 12-month periods and the predictive features for 
each state consisted of fractional cover components over each 12-month timeframe. 

3.4.3.2 Sample framework using temporal augmentation 

CRFs are a supervised classifier and, therefore, require example class labels to optimise the state transitions. 
Collecting repeat training data for these types of temporal sequences over large areas is challenging. Therefore, a 
sampling method was developed that uses available land cover classifications over any number of time periods to 
generate sequences of training labels. This method is referred to as ‘temporal augmentation’.  

With this approach, the 2019 woody extent was used to generate random stratified samples over space, resulting 
in thousands of samples that intersected the manually scrutinised woody extent data set. In practice, further 
stratified samples with additional land cover edge stratum (e.g. woody cover 90m from a non-woody pixel) were 
included to ensure that mixed pixels were represented in the sample pool. This random sample pool provided a 
starting point for woody/non-woody training examples. Next, training sequences (augmentation) from this static 
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pool were generated. 

The Landsat time series used for prediction were sequences of fractional cover data over 33 years, but the training 
sample pool only included labels from the 2019 woody extent, which coincided with a single year of seasonal 
medoid fractional cover data (approximated as Spring 2018 - Spring 2019 inclusive). Therefore, the samples were 
augmented to match the 33-year Landsat sequence length to train a CRF classifier. To do this, a subset of samples 
was selected within a mapping zone. A mapping zone could theoretically consist of any region, such as an 
ecological biome or administrative boundary. In this work, a regular grid of 150km x 150km across the state was 
used, with each grid cell representing an independent mapping zone. After woody/non-woody samples were 
collected for a particular mapping zone, thousands of 33-year pseudo-sequences were generated, where each 
pseudo-sequence consisted of samples spatially distributed across the mapping zone. It is important to note that 
each sample’s class label in each sequence was always woody or non-woody in the 2019 woody extent, and the 
associated Landsat data was always the set of seasonal cover fractions from the single year approximated by 
Spring 2018 - Spring 2019 (inclusive). Therefore, these sequences were pseudo sequences because they did not 
represent real time series. By generating thousands of random permutations, though, this temporal augmentation 
approach provided a sequential data set for a CRF model to "learn" transitions between different land cover states 
(e.g., woody to woody, woody to non-woody, and non-woody to woody). 

3.4.3.3 Woody probability estimates 

The CRF classifier optimises the conditional distribution p(y|X), which is the probability of y (e.g., a sequence of 
class labels) given a set of predictive features X (e.g., a sequence of predictive features). In this work, X and y 
were Landsat fractional cover time series and woody/non-woody label sequences, respectively, both taken from the 
temporal augmentation sample pool described in Section 3.4.3.2. More specifically, the predictive features 
consisted of 33 years of fractional cover sequences [(bare, green, non-green)1988, …, (bare, green, non-green)2021], 
with corresponding woody/non-woody class label pseudo-sequences (e.g., [woody1988, …, non-woody2021]). These 
data were used to train CRF models for each 150km X 150km mapping zone. As described above, a CRF 
estimates the transition likelihood between land cover states. Thus, for an individual pixel the transition likelihoods 
between sequence states are estimated with the assumption that there is co-dependency between labels. For 
example, a CRF trained on the woody/non-woody sequential data estimates likelihoods as [(p(w), p(nw))1988, …, 
(p(w), p(nw))2021], where the 1988 estimates might consist of a 0.7 and 0.3 likelihood of the pixel being 
predominantly woody and non-woody, respectively (i.e. (p(w)=0.7, p(nw)=0.3)1988). 

3.4.3.4 Woody age since disturbance estimates 

The start and end years of the most recent period of regrowth or persistent woody were estimated from the 1988-

2021 time series of woody probabilities using a heuristic approach. Four thresholds guided this work:  

• minimum baseline probability threshold: 0.05 

• minimum woody probability: 0.5 

• minimum proportional change: 0.01, and 

• minimum number of consecutive years: 3. 
 

For each pixel, the woody probabilities were evaluated to determine if the sequence at each time step was: 
 

a) increasing, characterised by a proportional change in probabilities exceeding the minimum proportional 

change and the probability exceeding the baseline probability threshold, or 

 

b) woody, characterised by the probability exceeding the minimum woody probability threshold. If the 

increasing or woody condition was met, the age was incremented.  

If at a given time step, the incremental age exceeded the minimum number of consecutive years as increasing or 

woody, then the start and end years of that period were recorded. The start year recorded the time step at which 

the increasing or woody condition was first satisfied. The end year was incremented at each successive time step 

until either the end of the time series or until neither woody nor increasing conditions were satisfied, in which case, 

the incremental age was reset to zero, and the iteration restarted from that time step. 

The SLATS historic Landsat (30m; 1988-2018) and Sentinel-2 (10m; 2018+) clearing data sets were used to 
constrain the modelled age estimates, so that the woody age since disturbance could not be greater than the time 
since last (full) clearing event recorded by SLATS, as follows: 

• Where an historical SLATS clearing event was recorded for a given pixel, the age was estimated as the 
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most recent of the last clearing event, and the estimated start of the last predicted regrowth/woody period.  

• Where there were persistently high woody probabilities (exceeding minimum woody probability) over the 
entire sequence, an age equal to the length of the time series was assigned. 

• Where no age could be estimated with any confidence due to an absence of clearing history and no 
detectable trends in the woody probability sequence, a label of “indeterminant” was assigned.  

The SLATS Sentinel-2 partial clearing classes, and previous Landsat “Thinning” classes were excluded from use in 
age estimation. 

Updates to the heuristic rules since the publication of Statewide Landcover and Trees Study (SLATS) Sentinel-2 – 
2018 have resulted in improved tracking of persistent woody vegetation over time, and increased ability to detect 
young regrowth. This in turn has resulted in fewer woody pixels with an ‘indeterminant’ age. 

From 2022 onwards, the woody age since disturbance is annually updated with some variation from the methods 
described above: 

• For all woody pixels where no clearing or new regrowth has been mapped in the given monitoring period, 
the woody age since disturbance is incremented by 1 from the previous year.  

• Where full clearing was mapped, the woody age is reset to zero.  

• Where woody additions were added to the woody extent or the age in the previous year was 
“indeterminant”, the age is estimated using the methods described in this section, applied to an extended 
time series of seasonal Landsat fractional cover (Section 3.4.3), constrained by all historic Landsat and 
Sentinel-2 SLATS clearing record up to and including the given monitoring period. 

3.4.4 Limitations 

Limitations to the woody vegetation age since disturbance estimation: 

• The 2018 baseline woody extent contains sparse and/or young woody vegetation that may not have been 
detectable at the Landsat scale, either in the CRF modelling approach or in previous monitoring periods 
and was therefore unable to be monitored at that scale.  

• Missing data in the fractional cover data that is used as model inputs to the CRF due to factors such as 
persistent cloud or topographic shadow as well as real but transient disturbance events such as fire or 
flood may cause woody probabilities to fall to 0, confounding age estimates.  

• There may be clearing omissions from the SLATS record due to scale effects or mapping errors that impact 
the ability to estimate age for a given pixel.  

• There may also be clearing events in the Landsat record that did not involve a full transition from woody to 
non-woody and are therefore still woody in the 2018 baseline woody extent.  

• Mismatches in scale and mapping specifications between the historic Landsat clearing data sets and the 
higher resolution 2018 baseline woody extent can result in artefacts in the age data set. For example, edge 
effects or small non-woody features such as roads and buildings which were the result of a past mapped 
clearing event but are currently included in the 2018 baseline woody extent due to minimum mapping unit 
specifications. 

3.4.5 Data products and outputs 

Thirty-three years (1988-2021) of woody probabilities across the state at Landsat 30m spatial resolution have been 
produced. The data values indicate the likelihood (range of 0 to 1) that a pixel is predominantly woody.  

The Queensland mosaic of estimated regrowth periods (1988-2021) captures the start and end year of the most 
recent detected regrowth or persistent woody period for each pixel over that period at Landsat 30m spatial 
resolution. 

The woody age since disturbance rasters record the estimated age since disturbance (years) of woody pixels for 
the given year of woody extent at Sentinel-2 10m spatial resolution. Currently this includes 2018, 2019 and 2020 
mosaics over Queensland with the intention to produce updates for each annual monitoring period.  

3.5 Woody vegetation regrowth mapping 

3.5.1 Overview 

The aim is to detect and map new regrowth annually using Sentinel-2 imagery. In the first Sentinel-2-based 
monitoring period, 2018-19, it was assumed that existing regrowth was already mapped and characterised in the 
2018 baseline woody vegetation extent. As regrowth generally occurs on time scales greater than one year, 
mapping and monitoring of new regrowth commenced from the 2019-20 monitoring period and included in annual 
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monitoring thereafter. The annual time-step may be reviewed if it is determined after a few monitoring periods that 
it is inefficient to map regrowth annually. 

Regrowth is only considered in the non-woody portion of the Queensland landscape as defined by the woody 
extent data set at the start of the given monitoring period. Densification of woody landscapes due to regrowth in 
already woody areas is not currently monitored.  

The woody vegetation regrowth mapping approach is similar to that used for the clearing mapping in that a two-
stage approach is used. Firstly, the automatic detection of candidate regrowth areas for consideration is 
undertaken using a similar CRF modelling approach as used for Landsat-based age estimation (Section 3.4) but 
applied to a shorter, rolling Sentinel-2 time series. This is then followed by a manual assessment and mapping 
process to determine if a candidate regrowth area is sufficiently woody to be counted as regrowth and added back 
to the woody account. Furthermore, to ensure comprehensive coverage, regions not originally captured in the 
candidate modelling are also evaluated through image interpretation to identify additional areas of potential new 
regrowth.  

Where it can be mapped using the methods described below, regrowth will be delineated and added into the woody 
extent, effectively a ‘gain’ in the context of the accounting framework.  

3.5.2 Methods 

Following the work described in Section 3.4, time sequences of woody probabilities are used to predict candidate 
new regrowth areas. However, the regrowth monitoring framework differs from the age attribution in two key ways:  

i. a shorter, 10-year time series of Sentinel-2 imagery supplemented with up-sampled Landsat imagery is 
used instead of 30+ year Landsat sequence; and  

ii. regrowth is estimated with a modified set of heuristic rules adapted for the shorter time series and with a 
focus on young regrowth that is not currently in the woody extent. 

3.5.2.1 Short-term woody probabilities 

Sequential-based CRF woody probability estimates over ten years are utilised for this modelling approach. The 
timeframe chosen was designed to shorten the prediction sequence compared to the 33-year age estimates while 
maintaining sufficient temporal resolution to model temporal co-dependencies between woody/non-woody 
transitions. Any 10-year sequence ending around 2020 precedes the first Sentinel-2 launch date of 23 June 2015. 
Therefore, the Sentinel-2 time series is supplemented with Landsat data prior to the beginning of the Sentinel-2 
era. Alternatively, the monitoring timeframe could be shortened to less than 10 years to use Sentinel-2 only. 
However, tests showed that sequences of less than five years were not sufficiently long enough for a CRF model to 
optimise land cover transitions. The Landsat is resampled from 30m to 10m spatial resolution to align with the 
Sentinel-2 grids. The practice of up-sampling coarser resolution imagery without ancillary information (e.g., fusion) 
is typically discouraged. However, in this case the Landsat data helped serve as a run-up period for the CRF 
model. That is, in practice, we are only interested in the final year of the 10-year period (refer Section 3.5.2.2) and 
only using the 10-year Landsat/Sentinel-2 sequence to help stabilise woody/non-woody transition estimates. The 
same ‘temporal augmentation’ approach is used to sample and fit a CRF model, using 10-year sequences instead 
of 33-year sequences. 

As an example of how this works in the SLATS monitoring framework, for the monitoring period 2019-20, the 10-
year time series consisted of resampled Landsat data from 2010 to June 2015. The remaining five years of the time 
series (i.e. 2015-2020) consisted of Sentinel-2 imagery only. For a given pixel, the sequence of woody likelihood 
from 2010-2020 (i.e. 10 annual probabilities) was estimated. These woody/non-woody probability sequences were 
then used in the heuristic model (refer Section 3.5.2.2) to estimate the presence (or not) of potential regrowth in 
2020. This process was repeated for the following monitoring year (2021) by shifting the input time series to 2011-
2021 and applying the same CRF model. The time series would ultimately consist of Sentinel-2-only during the 
2025 monitoring year with a 2015-2025 time series. This approach could also be applied to timesteps of finer 
temporal granularity (e.g. monthly instead of seasonal input data), which would allow for a sub-annual monitoring 
framework. 

3.5.2.2 Regrowth candidate identification 

Candidates for regrowth areas are identified using the rolling ten-year time series of woody probabilities (Section 
3.5.2.1), and a heuristic classification similar to that used for woody age since disturbance estimation (Section 3.4) 
and with a similar but reduced set of thresholds: minimum woody probability, minimum proportional change, and 
nconsec years (the minimum consecutive number of years of regrowing or woody period). For the 2019-20 
monitoring period these thresholds were: 0.5, 0.05, and 3, respectively. 

As an initial condition, only pixels which are not already woody at the start of the given monitoring period are 
considered as potential candidates. For these non-woody pixels, the sequential woody probabilities are assessed 
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to determine if a regrowth response is evident. Unlike in the age estimation, it is only the last period of nconsec 
years up to and including the end year of the monitoring period which is of interest. If the change in probabilities at 
each time step exceeds the minimum proportional change over the last nconsec years and the woody probability at 
the end year exceeds the minimum woody probability threshold, then the pixel is identified as an initial candidate.  

As an example, for the monitoring period 2019–20, pixels which were non-woody in the 2019 woody extent data set 
were assessed to determine if they displayed a proportional increase in probabilities greater than 0.05 relative to 
the previous year, over all three years, 2018 – 2020 (inclusive). Those which met that condition and also had a 
woody probability exceeding 0.5 at 2020 were potential candidates. 

Filtering was applied to the set of candidate regrowth pixels to remove clumps of candidate pixels smaller than 
0.5ha. 

3.5.2.3 Regrowth mapping 

3.5.2.2Following the automated generation of candidate regrowth areas as described Section 3.5.2.2, a 
comprehensive manual assessment and mapping process for the entire state is also conducted. This uses the 
candidate regrowth predictions to guide the mapping, supplemented by extensive onscreen verification and 
additional identification of new regrowth where it can be detected visually in the imagery, followed by quality 
assurance checking. This process ensures a comprehensive assessment of regrowth, in line with the level of effort 
afforded to the clearing mapping process. 

The manual process follows a similar structure to the clearing mapping described in section 3.3.5.3. Automated 
processes (Python scripts) are applied to a given Sentinel-2 tile to recall the Sentinel-2 imagery, the candidate 
regrowth estimates, the woody extent for editing, and additional ancillary data for that tile into a local GIS (ArcGIS 
Pro). The ancillary data is used to aid in the decision-making process and includes historical clearing data, land use 
information, and additional high-resolution imagery when available. Due to the often subtle and gradual increase in 
identifiable regrowth vegetation from satellite imagery, analysts employ a time series of historical Sentinel imagery 
to enable a thorough assessment of woody vegetation regrowth.  

Ideally regrowth needs to be observable in at least two consecutive years with obvious trees crowns identifiable in 
the imagery to be considered and mapped as regrowth. This ensures that non-woody ground cover is not 
incorrectly included in the mapping product. Identified regrowth is classified using the attributes listed in Table 6. As 
with the clearing mapping, these attributes are intended to provide an indication of the purpose for which the land is 
used at the location where the regrowth is mapped. Where potential regrowth is identified but has not developed to 
a suitable stage, or uncertainty exists, the area will be flagged for potential regrowth to be assessed again in the 
following mapping period. Quality assessment is conducted by a Senior Remote Sensing Scientist to check and 
validate mapped regrowth.  

Field work is undertaken to validate that mapped regrowth in the given monitoring period is woody (>=10% crown 
cover), and to confirm that the correct code had been applied. Where possible, features mapped as “Possible 
regrowth” are prioritised for field observations to improve certainty in the mapping, calibrate mapping staff in the 
image interpretation of woody vegetation and improve landscape knowledge. Field observations of young woody 
regrowth which is not yet observable in Sentinel-2 imagery are captured opportunistically. These areas are then 
monitored for future regrowth mapping. 
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Table 6: Codes used for the SLATS regrowth mapping attribution. 

 Code  Description  Examples  

Regrowth 
Activity  

3 Possible regrowth  Vegetation that has been identified as possible regrowth, but there is insufficient 
evidence to include it in the reporting. Flagged for future monitoring.  

21  Regrowth in Pasture  All native and non-native woody vegetation regrowth in pasture lands.  

22 Regrowth in Cropping New and regrowing woody crops and horticulture, including fodder crops and 
tree fruits and nuts.  

23  Regrowth in Forestry Regrowth in timber plantations and state forests. Forestry includes timber on 
state- or privately-owned lands, where it can be verified.  

24 Regrowth in Mine  Regrowth in mining areas. i.e., rehabilitation. 

26  Regrowth in Settlement  Regrowth in urban residential areas such as gardens and parklands. 

27 Regrowth in 
Infrastructure  

Regrowth along rail lines, airports, industrial complexes. 

28 Adjustment: incorrect 
clearing  

Incorrect full clearing in the previous mapping period added back to the woody 
extent. Reported as an adjustment. 

29 Adjustment: incorrect 
non-woody vegetation  

Correction to add vegetation due to incorrect mapping in the woody extent. 
Reported as an adjustment. 

3.5.3 Data products and outputs 

After finalising, the regrowth together with the clearing data sets are integrated with the woody extent data set to 
provide an updated woody extent and change attributes (Section 4.1.1). 

3.6 Woody vegetation density estimation using foliage projective cover 

3.6.1 Overview 

Foliage projective cover (FPC) is a metric of vegetation cover used in some Australian vegetation classification 
frameworks. FPC is defined as the fraction of ground covered by the vertical projection of photosynthetic foliage of 
all strata (Specht, 1983). An FPC metric derived from Sentinel-2 imagery is used to provide estimates about the 
range of tree and shrub densities represented in woody vegetation across Queensland, and in the context of the 
monitoring framework, the vegetation clearing and regrowth mapping. 

For some time, RSS has produced FPC data using a model applied to Landsat, calibrated by field observations 
(Armston, 2009, Kitchen, 2010). For the current SLATS methodology, an updated model was developed which 
relates field measurements of FPC to 2-year time series of NDVI computed from Landsat seasonal surface 
reflectance composites. As with the woody vegetation clearing index (Section 3.3.3.2), there is insufficient field data 
that coincides with the Sentinel-2 satellite program. The model was therefore fitted on Landsat imagery using a 
significantly expanded set of field data than was used for the previous Landsat FPC model fitting. The model is 
then applied to analogous Sentinel-2 seasonal surface reflectance composites to produce an FPC image, using the 
radiometric relationships established between Sentinel-2 and Landsat in Flood (2017). This is intended to represent 
the FPC for that 2-year period rather than any single date, hence why SLATS reporting uses the data broadly to 
provide context in regard to woody vegetation densities in the woody extent, and loss and gain of density classes 
due to clearing activity and new regrowth, respectively.  

The data set is generally expected to provide a reasonable estimate of the range of FPC values for any given stand 
of woody vegetation, but it is expected there will be over- and under-estimation of absolute FPC values for any 
specific location (i.e. pixel).  

3.6.2 Data 

The updated FPC model was developed based on: 

• A two-year (eight-season) time series of Landsat seasonal surface reflectance composites (using the 
medoid method of Flood, 2013b). Use of the seasonal composites aims to reduce noise and cloud 
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contamination in surface reflectance while still capturing much of the seasonal variation. 

• The national data set of star-transect field data (Muir et al., 2011) from which measures of FPC can be 
derived. At the time of the model development, this was more than 4000 individual sites. 

In the model, FPC is the combined green fraction of foliage from over- and mid-storey foliage from woody plants 
(trees and shrubs). While it would be desirable to have a model fitted to Sentinel-2 imagery, little of the available 
field data has been collected since the launch of Sentinel-2. 

To produce a Sentinel-2 FPC product that represents a given period, the model is applied to two-year time series of 
Sentinel-2 surface reflectance seasonal composites, radiometrically adjusted to match Landsat using relationships 
described in Flood (2017).  

For SLATS monitoring and reporting, the two-year time series for FPC production is selected to best estimate FPC 
of woody pixels for a given woody extent data set. The start and end seasons are chosen to best approximate the 
SLATS annual monitoring period (nominally August through to August) and so that all seasonal input data precede 
the nominal date of woody extent (August of given year). This ensures that the maximum NDVI pixel used to 
estimate FPC for the given woody extent is not influenced by woody vegetation change that occurs in the 
successive monitoring period. As an example, the published Statewide Landcover and Trees Study (SLATS) 
Sentinel-2 – 2018 Foliage Projective Cover (FPC) – Queensland, estimates FPC for the 2018 woody extent, using 
season reflectance composites from the two years preceding: Winter 2016 – Autumn 2018 (inclusive). 

3.6.3 Methods 

3.6.3.1 Model fitting 

The FPC model relates the field measured green fraction of mid- and over-storey foliage cover to the minimum 
value of NDVI calculated from 2-years of Landsat seasonal surface reflectance composites. NDVI is a standard 
vegetation index used in remote sensing which is highly correlated with vegetation photosynthesis (Rouse, 1974). 
Other indices and metrics were tested but yielded equivalent or worse results therefore NDVI was chosen for 
simplicity and as it is a widely known index of vegetation cover. 

The FPC model is sensitive to fluctuations in vegetation greenness, leading to anomalies such as high FPC on 
irrigated pastures or locations with very green herbaceous or grass understoreys. A given pixel in the output FPC 
image represents the predicted FPC in the season with the least green/driest vegetation cover over the 2-year 
period assumed to be that with the least influence of seasonally variable herbaceous vegetation and grasses on 
the more seasonally stable woody FPC estimates. The two-year period was used partly because it represents a 
period relative to tree growth but was also constrained due to the limited availability of imagery in the early 
Sentinel-2 time series. Other time periods were tested but did not improve estimates. 

The fitted model is a simple quadratic model with three coefficients: 

FPC = c0 + c1NDVImin +c2 NDVI2min 

Where: 

co = 6.98 

c1 = 65.73 

c2 = 51.32 

NDVImin is the second lowest value of NDVI for the 2-year period of seasonal surface reflectance. 

The second lowest value was chosen as cloud contamination due to failure of cloud masking in the seasonal 
surface reflectance composites may also result in very low values of NDVI. Predicted FPC is clipped to values 
between 0 and 100. 

Model performance was assessed with Monte Carlo Cross Validation (MCCV).  

3.6.3.2 FPC prediction 

The FPC model is applied to the two-year time series of Sentinel-2 surface reflectance seasonal composites to 
produce an FPC image. Finally, the woody extent data set (Section 3.2.6) is used to reset FPC values in non-
woody regions to zero to eliminate over-estimation of FPC in green pastures, cropping regions and other non-
woody landscapes that may be persistently green. 
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3.6.4 Data products and outputs 

The final product is a state-wide Sentinel-2 Foliage Projective Cover estimated for a given woody extent and used 
in reporting of woody vegetation density. It is also released as a stand-alone data product to support a range of 
applications, particularly related to carbon, fire and biodiversity programs, and grazing (i.e. pasture biomass) 
modelling and prediction. 

4 Data integration, reporting and accounting 

4.1 Data integration 

4.1.1 Annual updating of the woody extent 

The woody extent (Section 3.2) forms the foundation of the SLATS woody vegetation (annual) change accounting 
framework (Section 2.2). In each annual monitoring period, the woody extent is updated by integrating the SLATS 
clearing (from 2018-19 onward), and regrowth mapping (from 2019-20 onward). For a given monitoring period, both 
the woody extent and change are used in reporting. The updated woody extent is then used to initialise change 
mapping for the next period of mapping and reporting.  

During the initial transition to the Sentinel-2-based monitoring (over 2018-19) when the woody extent data set and 
enhanced monitoring framework were still under development there were several transitional steps required to 
integrate the change mapping and woody extent data sets (Sections 4.1.1.1 and 4.1.1.2). Following this transitional 
period, annual updating routinely involves adding areas of regrowth to, and taking away areas of full clearing, from 
the woody extent (Section 4.1.1.1). Areas of partial clearing (minor and major partial clearing activity) remain in the 
woody extent but are attributed for reporting purposes and to inform future monitoring.  

The maintenance of the woody extent is not always as straightforward as subtracting the clearing and adding the 
regrowth each year. It is inevitable that there will be ongoing refinements due to misclassification and error as well 
as spatial data management operations. Annual updating and maintenance of the woody extent allows for some 
corrections due to errors in the woody extent, regrowth or clearing mapping in a previous mapping period. Updates 
due to corrections are integrated similarly to clearing and regrowth but are coded and reported separately to 
distinguish additions and subtractions due to error/mapping refinement. 

4.1.1.1 2018 update 

The initial woody extent map (Section 3.2) was derived from 2017 Earth-I imagery. As a 2018 woody extent 

baseline was required for the revised SLATS framework, the first step was to update the 2017 map to 2018 and 

establish the baseline.  

The previously released 2017-18 SLATS Landsat clearing data set was used to inform the update of the woody 

extent data set from 2017 to the 2018. Differences in scale, specifications, and definitions between the 2017 woody 

extent and the 2017-18 Landsat-based clearing data set presented some difficulties for seamless integration of the 

two data sets. The SLATS 2017-18 clearing data set was produced using Landsat imagery prior to the 

incorporation of the woody extent data set into the SLATS clearing mapping process. As such, the resolution is 

generally coarser than the woody extent product. Further, the pixel-based Landsat clearing mapping approach 

differs from the current Sentinel-2 footprint mapping approach (refer to Section 3.3.5.1). The definition of “woody” 

also varied between the two data sets. The minimum woody density for inclusion in the current woody extent is 

~10% crown cover (~5% FPC) as mapped from Earth-i and Sentinel-2 imagery. The Landsat-based method used a 

more conservative woody threshold of ~20% crown cover (~10-11% FPC), or that which is detectable in Landsat 

imagery. Finally, the 2017-18 Landsat-based SLATS clearing data set did not include the partial clearing categories 

used in the current method (Section 3.3.5.2) which identify clearing activity where there has been modification, but 

enough woody material remains to be retained in the woody extent data set. 

A comprehensive manual checking and editing approach was used to update the SLATS 2017-18 clearing data to 

align with the scale and definition of the 2017 woody extent to allow for easier integration. Scientists checked each 

clearing event greater than 2ha using Sentinel-2 imagery for the relevant monitoring end date. A Sentinel-2 based 

clearing index was also used to identify missed clearing not recorded in the 2017-18 Landsat clearing data set. 

Manual editing was applied to include missed clearing from the 2017-18 monitoring period, and to fully delineate 

the whole clearing footprint where clearing had been mapped using the Landsat methods. Each event was also 

reviewed to determine if full or partial clearing had occurred as per the current approach. Full clearing areas were 

removed from the woody extent and partial clearing remained in the woody extent map. The updated woody extent 

was filtered to remove polygons <0.5ha, the minimum mapping unit for the woody extent baseline. The result was a 
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2018 statewide baseline woody extent map.  

4.1.1.2 2019 update 

Integration of clearing mapping and woody extent for the first Sentinel-2-based 2018-19 monitoring period was 

more seamless, as the Sentinel-2 clearing and woody extent data sets are, by design, integrated at the outset of 

change mapping, and more closely aligned in mapping scale and resolution. As the program was still refining 

partial and full clearing mapping categories, there was some additional assessment and editing required to further 

refine these areas as part of the 2019 update. This was particularly the case in areas such as the Mulga Lands 

bioregion where strip clearing and other fodder harvesting management resulted in some complex clearing patterns 

and hence some difficulty determining full clearing (which are updated to non-woody in the woody extent) or partial 

clearing (which remain in the woody extent). Where cleared strips could be defined and met the woody extent 

criteria for linear features i.e. 20m minimum width), they were manually delineated and coded as full or partial 

(major) clearing (codes 41 and 71 respectively, Table 5). Following post-processing attribution and filtering 

(described in Section 4.1.1.2) the result was a 2019 update to the statewide woody extent map. 

4.1.1.1 Ongoing annual updates 

From 2019-20 onwards, the revised SLATS methodology described herein was more fully established, and updates 

to the woody extent routinely incorporate annual gains due to regrowth as well as losses due to clearing. For 

example, the 2020 update involved subtracting the 2019-20 full clearing, adding the 2020 regrowth, attributing 

woody polygons impacted by partial clearing activity and integrating corrections for incorrect woody extent or 

previous clearing mapping. The development of an automated method for more refined mapping in complex woody 

vegetation clearing patterns associated with fodder harvesting and strip clearing specifically (Section 3.3.5.4) has 

also been finalised and will be applied as required for future monitoring periods. 

From the 2021-22 monitoring period and ongoing, SLATS is a fully integrated editing framework such that all 
editing is done directly on a master woody extent layer. Change attribution is managed through the data set’s 
attribute table and adding new polygons or splitting existing polygons as required. 

4.1.1.2 Post-processing and attribution  

A series of Arcpy batch scripts is used to apply cleaning and filtering to remove artefacts associated with the editing 

and updating procedures. Finally, the updated woody extent and change polygons are filtered to remove slivers 

and patches which are less than 0.25ha to ensure the ongoing monitoring specification of 0.25ha minimum 

mapping unit are maintained in the data set.  

For a given monitoring period, a new attribute field is added to the master woody extent database to record the 

updated woody extent attribute for each change polygon. Another is added to record the clearing or regrowth 

attribution codes (Table 5 and Table 6 respectively) for that monitoring period. For example, upon completion of the 

2019-20 change mapping, the clearing and regrowth polygons were incorporated into the master woody extent 

database by adding a 2020 field, where polygons were recorded as either woody or non-woody depending on the 

clearing or regrowth attribution codes and a 2019-20 Change field was added to record the clearing and regrowth 

attribution codes. Full clearing and regrowth involve a conversion from woody to non-woody and non-woody to 

woody respectively. Partial clearing involves only an update in the Change field for the relevant period. All 

remaining unchanged woody extent polygons are replicated into the attribute field corresponding to the updated 

year. The result is a single data set containing multiple epochs with a separate field for each woody extent year and 

fields recording the landcover class attributed to the change for each period.  

4.2 Reporting 

4.2.1 The reporting package 

The data products described in the sections above provide the basis for combining SLATS information with other 
data to monitor and account for woody vegetation extent and change in Queensland on an annual basis. Annual 
reports are released as web-based reports. The spatial data sets and annual reports are made available via the 
SLATS data products web page and Open Data, with supporting data also downloadable from the reporting pages.  

This ensures full transparency and enables SLATS information and data to be accessible to a range of 
stakeholders and users in formats that service a range of requirements and analyses. 

The SLATS reporting series associated with the current methodology commenced with the 2018 baseline woody 
vegetation extent and 2018-19 clearing reports, and from 2019-20 onwards, annual reporting of extent, clearing 
and (new) regrowth. 
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4.2.1.1 The SLATS cross-tabulation and regional data summaries 

The area of change in Queensland is summarised in cross-tabulation using several grouping layers including those 
listed in Section 4.2.1.3, but also including a wider range of regional and administrative boundaries: 

• Local Government Areas 

• Natural Resource Management regions 

• Catchments 

• Biogeographic subregions 

This creates a large table, from which flexible summaries can be easily made using simple queries. For example, 
the area of woody vegetation for 2019 can be calculated by the sum of the area in 2018 less the area mapped as 
cleared. More complex breakdowns of clearing activity, for example, by Regulated Vegetation Management (RVM) 
Map category, catchment and clearing type can be summarised.  

This change table forms the basis for the web-based reporting and the regional data summaries available as Open 
Data. It also provides a simple, pre-processed mechanism for arbitrary reporting on request. 

The procedure for creating the table is captured in a dedicated git repository. The workflow makes use of the 

Snakemake package (Mölder et. Al. 2021) and container processing (Kurtzer, Sochat & Bauer 2017) to ensure 
repeatability and process governance. 

4.2.1.2 The 2018 baseline woody vegetation extent report  

The 2018 baseline woody vegetation extent report provides the initial baseline for ongoing SLATS reporting, which 
annually monitors and accounts for woody vegetation extent and change in Queensland. The revised SLATS 
methodology described herein monitors and reports change in woody vegetation extent against this baseline. The 
report also includes information relating to woody vegetation density and age since disturbance estimates. 

4.2.1.3 The annual SLATS report 

The annual SLATS report summarises, and reports changes due to gains (regrowth) and losses (clearing) in woody 
vegetation across Queensland for the nominal period from August to the following August. The first of these 
reports, for the 2018-19 monitoring period, only includes changes due to woody vegetation clearing activity—
regrowth reporting is not included. It is assumed that existing regrowth in 2018-19 has been mapped and 
characterised in the 2018 woody vegetation extent baseline (Sections 3.5 and 4.2.1.2). 

Annual SLATS reports provide the key findings and a range of graphical and tabulated woody vegetation change 
activity summarised by: 

• regrowth and type of clearing activity: full, partial (major) and partial (minor) clearing 

• landcover replacement class 

• categories of age and density of woody vegetation 

• vegetation management status including RVM Map category and vegetation management class 

• bioregions, with other regional summaries available via open data e.g. Local Government Areas, 
catchments 

• a transaction summary of woody vegetation change over the period. 

4.2.1.4 Data products 

Data products produced are released as Open Data. This includes the clearing and regrowth data, the woody 
extent data, the age and density products, and any data associated with reporting and regional summaries. 

4.2.1.5 A note on reporting areas vs rates 

Historically, SLATS has reported annual rates of clearing mostly due to the difficulty of acquiring two cloud-free 
dates of Landsat imagery one year apart (Appendix A in Queensland Department of Environment and Science, 
2018). For example, the start and end dates selected could be as little as 8 months, or as much as 15-16 months 
apart, sometimes for adjacent path/rows. Thus, clearing areas were adjusted (i.e. annualised) to account for this 
time lag and to enable comparative annual reporting. The increased temporal resolution of the Sentinel-2 satellites 
(5-day return interval vs Landsat’s 16-day) means that opportunities for obtaining cloud-free imagery much closer 
to 12 months apart are significantly increased. For example, an analysis of the SLATS-selected cloud-free 
Sentinel-2 tiles for 2019 showed that if a nominal date of August 15 was chosen, all the Sentinel-2 tiles for the state 
were within one month of that date. The only tiles which were not within one month were some coastal tiles in the 
far North of Cape York which have very little landmass and are generally cloud-affected year-round. As such, 
annualised rates are no longer reported and have been replaced by the actual areal change figures.   
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6 Appendix 

6.1 Landsat continuity: a sample-based estimation of woody clearing in 
2018–19 using SLATS Landsat-based methodology 

6.1.1 Introduction 

SLATS has been detecting woody vegetation clearing based on Landsat for over 30 years. As detailed in the 
previous sections of this document, SLATS has undergone significant methodological changes starting from the 
2018-19 monitoring period. In addition to increasing the spatial resolution from 30m to 10m by changing the 
satellite base imagery to Sentinel-2, the program has adopted a more comprehensive approach in which the 
clearing footprint is mapped as cleared instead of just single pixels of woody change. This treatment of clearing as 
a landscape phenomenon is supported by the incorporation of the woody vegetation extent product into the 
mapping process to identify which patches are woody. These methodological changes mean that clearing 
estimates obtained from this new approach are not comparable to previous clearing estimates based on Landsat. 

The inability to compare the 2018-19 clearing results with previous monitoring periods is particularly problematic as 
it becomes difficult to assess the impact of legislative changes. A series of amendments to the VMA were passed 
in 2018 to reintroduce a number of the laws which were repealed by the previous government, and to repeal some 
laws which were contributing to increased clearing. The intention of the amendments was primarily to reduce 
clearing rates in regulated vegetation. However, the effect of the amendments would not be directly measurable 
because the estimates of clearing based on the revised SLATS methodology are not directly comparable with 
previously reported clearing rates. Furthermore, as the new methodology involves a change in the way that the 
clearing is being mapped, it is not possible to simply model the predicted Landsat-based area using a degradation 
model. Therefore, there is a need to generate estimates of clearing that are Landsat based and that follows the 
previous SLATS methodology.  

The aim of this work is to present a sample-based estimate of the area cleared based on the SLATS Landsat-
based methodology to provide an estimate of clearing in 2018-19 which can be compared with previously reported 
SLATS clearing rates. In other words, this work looked at what would have been mapped if SLATS had continued a 
similar mapping process based on Landsat.  

6.1.2 Methods 

Given time and resource limitations, it was not feasible to run a parallel Landsat/Sentinel-2 change mapping 
exercise. As an alternative, a sample-based approach in a subset of the state was developed. The established 
SLATS methodology for the mapping clearing was followed (Queensland Department of Environment and Science, 
2018).  

6.1.2.1 Study area 

The study area was the Brigalow Belt Bioregion. This area was selected because it has historically been an area of 
relatively high clearing rates, has a range of land uses and ecosystems and includes over half of the Great Barrier 
Reef catchment area. 

6.1.2.2 Satellite data 

6.1.2.2.1 Landsat scenes 

Landsat scenes from 2018 were compared to selected scenes from 2019. The 2018 scenes were those that had 
been previously used for the end date of the 2017-18 monitoring period. For 2019, 21 Landsat scenes that cover 
the Brigalow Belt Bioregion were selected using the following criteria:  

a) scene date should be as close as possible to the Sentinel 2 date for 2018-19;  
b) images should be from the dry season to maximize contrast, and  
c) scenes with the lowest cloud cover and similar green/dryness between Landsat and Sentinel-2 were 

preferred. No composites were used. 

6.1.2.2.2 Clearing classification 

The Landsat-based clearing index (Scarth et al., 2008) was applied to the pairs of Landsat dates to produce a 
clearing probability layer which could then be edited by SLATS scientists. 

6.1.2.2.3 Ancillary data 

AIRBUS very high-resolution resolution imagery (https://www.intelligence-airbusds.com/imagery/oneatlas/data/) 



   
 

31 

and Sentinel 2 were used to guide decisions. Ancillary data is used to assist determinations for woody/non woody 
vegetation, and if clearing is identified, confirm that the changes are indeed human-induced clearing. 

6.1.2.2.4 Sampling design  

A grid that covers the Brigalow Belt Bioregion was produced using geoprocessing tools from ArcPro v2.4.2. The 
area was divided into 5,189 units (Figure 2). The size of each grid cell was defined based on the mapping scale 
used in the interpretation (1:37000). Each cell corresponds to 11.5km by 6.5km, which is the size of the window 
desktop viewer at the scale used by the editing scientist. The grid was overlaid with the 21 Landsat scene 
footprints, and information on the path/row was assigned to each cell along with a unique identifier. Each grid cell 
corresponds to one sampling unit. 

A series of eligibility criteria were applied to the sampling units to filter those units that were considered impractical 
to include in the sample. To be included in the sample, units should be completely located within a scene and 
contain at least 70% of valid pixels (i.e. coastal units with only a small portion of land were removed). In addition, 
only units that contain at least one probability pixel derived from the clearing index classification were included. 
This criterion was based on analysis of previous monitoring periods which demonstrate that areas without an initial 
indication of potential clearing are very rarely identified as being cleared. A simple random sample of 20% of the 
eligible sampling units per scene was taken. To provide information on operator variability, a second sample of 
20% was taken from 5 scenes, half of which had been evaluated in the first round.  

 

 

Figure 2. Sample units for the study 

6.1.2.3 Image interpretation process  

Each unit in the sample was assessed using the same interpretation approach for SLATS as previous monitoring 
periods. To account for interpretation variability half of the sampling units in five of the scenes were interpreted 
twice by different scientists. The scientists undertaking the editing did not know if the unit that was being assessed 
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had been previously evaluated or not. As with standard SLATS methodology, each of the sampling units that was 
edited was checked by a senior scientist to maximize consistency and guarantee the quality of the product. 

6.1.2.4 Sample-based estimation of the area cleared 

The proportion of cleared pixels from all the valid pixels in each sampling unit was estimated. A cross tabulation 
between the edited raster and the most recent remnant vegetation map, for each sampled unit was done. Each unit 
was then summarised as the proportion of pixels marked as cleared relative to the total number of valid pixels 
(excluding cloud, no data, water etc pixels) in the unit. 

The mean proportion of pixels that were cleared in remnant and non-remnant vegetation was estimated. The 
estimated area cleared was obtained as the product of the mean proportion of cleared pixels by the number of valid 
pixels within the Brigalow Belt Bioregion for 2017-18. Results were converted from pixels to ha by multiplying by 
0.09 (each pixel 900m2). 

6.1.3 Results 

The estimated area of total clearing in the Brigalow Belt in 2018-19 was 234,810 hectares, an increase of 38,160 
hectares compared to the 2017-18 period (Table 7). The 95% confidence interval suggests that this is a significant 
increase from the 2017-18 period. 

Table 7: Summary of estimated total clearing for the Brigalow Belt bioregion in the 2018-19 period 

 Area (1000’s ha) Change 

Veg Class e1718  e1819 95% CI Delta % Change 

all  196.65  234.81  (202.38, 267.24)  38.16  19%  

The estimated clearing area for the 2018-19 monitoring period in the Brigalow Belt was 35,550 hectares in remnant 
areas and 199,270 hectares in non-remnant areas (Table 8). This represents a 58% and 14% increase, 
respectively, compared to the previous monitoring period. The 95% confidence interval suggests that this 
difference is significant for remnant clearing. This estimate is consistent with the previous three monitoring periods 
(Figure 3).  

Table 8: Summary of estimated clearing area for the Brigalow Belt bioregion in the 2018-19 period 

 Area (1000’s ha) Change 

Veg Class e1718  e1819 95% CI Delta % Change 

Remnant 22.46  35.55  (28.10, 42.99)  13.09  58%  

Non-remnant 174.19  199.27  (169.65, 228.89)  25.07  14%  
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Figure 3. Clearing areas for Brigalow Belt bioregion from 2013-14 to 2018-19 for all clearing (top) and separated into 
clearing in remnant and non-remnant areas (bottom). The sampling-based estimates are presented as grey bars, with 
the 95% confidence interval superimposed. 

6.1.4 Conclusion 

The results of this study estimate that using the SLATS Landsat-based methodology, there was 234,810 hectares 
of clearing in the Brigalow Belt in 2018-19. This would be an increase of 19% in the area cleared in the Brigalow 
Belt in 2018-19 compared to the 2017-18 monitoring period which had 196,650 hectares of clearing mapped. The 
estimates of total clearing are consistent with previous recent monitoring periods. Importantly, there is no evidence 
that clearing rates have reduced between the 2017-18 and 2018-19 monitoring periods.  

There are some difficulties in implementing a sampling approach to faithfully recreate the conditions that would 
have been in place if the SLATS program had continued with Landsat instead of moving to Sentinel-2 data. 
Significant user variability, for example, was identified in this exercise, and given the small size of the team 
available to do the sampling exercise could have introduced some bias. It should be noted though that the results 
also aligned with observations of senior scientists from their Sentinel-2-based mapping for the 2018-19 monitoring 
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period. 

The study demonstrated a method for estimating a clearing area for a given region, based on a stratified sample. 
Areas estimates were obtained, with confidence intervals. Thus, comparisons could be made with previously 
reported clearing figures to determine if clearing had significantly increased, decreased, or remained at similar 
levels as the previous monitoring period(s). The method therefore represents an efficient approach for obtaining 
clearing estimates if the aim is to provide indicative figures to guide decision-making. The sample-based method is 
similar to statistical sampling approaches applied in other areas of official reporting, such as is undertaken by the 
Australian Bureau of Statistics. It is therefore not a new concept in the context of official reporting and could be 
considered where future comparable estimates of Landsat-based clearing mapping are required. However, it is 
anticipated that once the Sentinel-2 based program undertakes two or three monitoring periods, this requirement 
may diminish. That said, the historical context that the SLATS Landsat clearing record provides with respect to 
environmental and policy change in Queensland is pivotal to understanding the current and future state of 
Queensland’s ecosystems and the policy which is intended to protect them while maintaining sustainable 
development, particularly for agriculture. The method presented has the potential to continue to contribute to that 
record. 


